mirror of https://github.com/hero-y/BHRL
117 lines
4.4 KiB
Python
117 lines
4.4 KiB
Python
|
import torch
|
||
|
|
||
|
from mmdet.core import bbox2result
|
||
|
from ..builder import DETECTORS, build_head
|
||
|
from .single_stage import SingleStageDetector
|
||
|
|
||
|
|
||
|
@DETECTORS.register_module()
|
||
|
class YOLACT(SingleStageDetector):
|
||
|
"""Implementation of `YOLACT <https://arxiv.org/abs/1904.02689>`_"""
|
||
|
|
||
|
def __init__(self,
|
||
|
backbone,
|
||
|
neck,
|
||
|
bbox_head,
|
||
|
segm_head,
|
||
|
mask_head,
|
||
|
train_cfg=None,
|
||
|
test_cfg=None,
|
||
|
pretrained=None,
|
||
|
init_cfg=None):
|
||
|
super(YOLACT, self).__init__(backbone, neck, bbox_head, train_cfg,
|
||
|
test_cfg, pretrained, init_cfg)
|
||
|
self.segm_head = build_head(segm_head)
|
||
|
self.mask_head = build_head(mask_head)
|
||
|
|
||
|
def forward_dummy(self, img):
|
||
|
"""Used for computing network flops.
|
||
|
|
||
|
See `mmdetection/tools/analysis_tools/get_flops.py`
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def forward_train(self,
|
||
|
img,
|
||
|
img_metas,
|
||
|
gt_bboxes,
|
||
|
gt_labels,
|
||
|
gt_bboxes_ignore=None,
|
||
|
gt_masks=None):
|
||
|
"""
|
||
|
Args:
|
||
|
img (Tensor): of shape (N, C, H, W) encoding input images.
|
||
|
Typically these should be mean centered and std scaled.
|
||
|
img_metas (list[dict]): list of image info dict where each dict
|
||
|
has: 'img_shape', 'scale_factor', 'flip', and may also contain
|
||
|
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
|
||
|
For details on the values of these keys see
|
||
|
`mmdet/datasets/pipelines/formatting.py:Collect`.
|
||
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
|
||
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
|
||
|
gt_labels (list[Tensor]): class indices corresponding to each box
|
||
|
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
|
||
|
boxes can be ignored when computing the loss.
|
||
|
gt_masks (None | Tensor) : true segmentation masks for each box
|
||
|
used if the architecture supports a segmentation task.
|
||
|
|
||
|
Returns:
|
||
|
dict[str, Tensor]: a dictionary of loss components
|
||
|
"""
|
||
|
# convert Bitmap mask or Polygon Mask to Tensor here
|
||
|
gt_masks = [
|
||
|
gt_mask.to_tensor(dtype=torch.uint8, device=img.device)
|
||
|
for gt_mask in gt_masks
|
||
|
]
|
||
|
|
||
|
x = self.extract_feat(img)
|
||
|
|
||
|
cls_score, bbox_pred, coeff_pred = self.bbox_head(x)
|
||
|
bbox_head_loss_inputs = (cls_score, bbox_pred) + (gt_bboxes, gt_labels,
|
||
|
img_metas)
|
||
|
losses, sampling_results = self.bbox_head.loss(
|
||
|
*bbox_head_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
|
||
|
|
||
|
segm_head_outs = self.segm_head(x[0])
|
||
|
loss_segm = self.segm_head.loss(segm_head_outs, gt_masks, gt_labels)
|
||
|
losses.update(loss_segm)
|
||
|
|
||
|
mask_pred = self.mask_head(x[0], coeff_pred, gt_bboxes, img_metas,
|
||
|
sampling_results)
|
||
|
loss_mask = self.mask_head.loss(mask_pred, gt_masks, gt_bboxes,
|
||
|
img_metas, sampling_results)
|
||
|
losses.update(loss_mask)
|
||
|
|
||
|
# check NaN and Inf
|
||
|
for loss_name in losses.keys():
|
||
|
assert torch.isfinite(torch.stack(losses[loss_name]))\
|
||
|
.all().item(), '{} becomes infinite or NaN!'\
|
||
|
.format(loss_name)
|
||
|
|
||
|
return losses
|
||
|
|
||
|
def simple_test(self, img, img_metas, rescale=False):
|
||
|
"""Test function without test-time augmentation."""
|
||
|
feat = self.extract_feat(img)
|
||
|
det_bboxes, det_labels, det_coeffs = self.bbox_head.simple_test(
|
||
|
feat, img_metas, rescale=rescale)
|
||
|
bbox_results = [
|
||
|
bbox2result(det_bbox, det_label, self.bbox_head.num_classes)
|
||
|
for det_bbox, det_label in zip(det_bboxes, det_labels)
|
||
|
]
|
||
|
|
||
|
segm_results = self.mask_head.simple_test(
|
||
|
feat,
|
||
|
det_bboxes,
|
||
|
det_labels,
|
||
|
det_coeffs,
|
||
|
img_metas,
|
||
|
rescale=rescale)
|
||
|
|
||
|
return list(zip(bbox_results, segm_results))
|
||
|
|
||
|
def aug_test(self, imgs, img_metas, rescale=False):
|
||
|
"""Test with augmentations."""
|
||
|
raise NotImplementedError(
|
||
|
'YOLACT does not support test-time augmentation')
|