BHRL/configs/voc/BHRL.py

211 lines
7.0 KiB
Python

# model settings
test_seen_classes = False
model = dict(
type='BHRL',
pretrained=None,
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=384,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='BHRLRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(
type='DeformRoIPoolPack',
output_size=7,
output_channels=256),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=[
dict(
type='BHRLConvFCBBoxHead',
use_shared_fc = True,
num_fcs=2,
in_channels=384,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
ihr = dict(
metric_module_in_channel=256,
metric_module_out_channel=384,
),
loss_cls=dict(
type='RPLoss', use_sigmoid=False, loss_weight=1.0,alpha=0.25),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))]),
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
# nms_across_levels=False,
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)]),
test_cfg = dict(
rpn=dict(
# nms_across_levels=False,
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100,
mask_thr_binary=0.5)))
# dataset settings
dataset_type = 'OneShotVOCDataset'
data_root = 'data/VOCdevkit/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
# We use the same image size as the paper (One-Shot Instance Segmentation). It is the first to study one-shot object detection.
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
dict(type='Resize', img_scale=(1024, 1024), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(1024, 1024)),
dict(type='DefaultFormatBundle'),
dict(type='LoadSiameseReference'),
dict(type='ReferenceTransform', img_scale=(192, 192), keep_ratio=True, **img_norm_cfg),
dict(type='SiameseFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1024, 1024),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(1024, 1024)),
dict(type='ImageToTensor', keys=['img']),
dict(type='LoadSiameseReference'),
dict(type='ReferenceTransform', img_scale=(192, 192), keep_ratio=True, **img_norm_cfg),
dict(type='SiameseFormatBundle'),
dict(type='Collect', keys=['img'], meta_keys=['img_info', 'filename', 'ori_shape',
'img_shape', 'pad_shape', 'scale_factor',
'flip', 'img_norm_cfg', 'label']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'voc_annotation/voc_train.json',
img_prefix=data_root,
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'voc_annotation/voc_test.json',
img_prefix=data_root,
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'voc_annotation/voc_test.json',
img_prefix=data_root,
pipeline=test_pipeline,
test_seen_classes=test_seen_classes,
position=0))
evaluation = dict(interval=1, metric='bbox')
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[6])
runner = dict(type='EpochBasedRunner', max_epochs=9)
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=20,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = 'work_dirs/voc/BHRL'
load_from = 'resnet_model/res50_loadfrom.pth'
resume_from = None
workflow = [('train', 1)]