mirror of https://github.com/hero-y/BHRL
155 lines
5.8 KiB
Python
155 lines
5.8 KiB
Python
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from mmcv.cnn import ConvModule
|
|
from mmcv.runner import auto_fp16
|
|
|
|
from ..builder import NECKS
|
|
from .fpn import FPN
|
|
|
|
|
|
@NECKS.register_module()
|
|
class PAFPN(FPN):
|
|
"""Path Aggregation Network for Instance Segmentation.
|
|
|
|
This is an implementation of the `PAFPN in Path Aggregation Network
|
|
<https://arxiv.org/abs/1803.01534>`_.
|
|
|
|
Args:
|
|
in_channels (List[int]): Number of input channels per scale.
|
|
out_channels (int): Number of output channels (used at each scale)
|
|
num_outs (int): Number of output scales.
|
|
start_level (int): Index of the start input backbone level used to
|
|
build the feature pyramid. Default: 0.
|
|
end_level (int): Index of the end input backbone level (exclusive) to
|
|
build the feature pyramid. Default: -1, which means the last level.
|
|
add_extra_convs (bool): Whether to add conv layers on top of the
|
|
original feature maps. Default: False.
|
|
extra_convs_on_inputs (bool): Whether to apply extra conv on
|
|
the original feature from the backbone. Default: False.
|
|
relu_before_extra_convs (bool): Whether to apply relu before the extra
|
|
conv. Default: False.
|
|
no_norm_on_lateral (bool): Whether to apply norm on lateral.
|
|
Default: False.
|
|
conv_cfg (dict): Config dict for convolution layer. Default: None.
|
|
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
|
act_cfg (str): Config dict for activation layer in ConvModule.
|
|
Default: None.
|
|
init_cfg (dict or list[dict], optional): Initialization config dict.
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
num_outs,
|
|
start_level=0,
|
|
end_level=-1,
|
|
add_extra_convs=False,
|
|
extra_convs_on_inputs=True,
|
|
relu_before_extra_convs=False,
|
|
no_norm_on_lateral=False,
|
|
conv_cfg=None,
|
|
norm_cfg=None,
|
|
act_cfg=None,
|
|
init_cfg=dict(
|
|
type='Xavier', layer='Conv2d', distribution='uniform')):
|
|
super(PAFPN, self).__init__(
|
|
in_channels,
|
|
out_channels,
|
|
num_outs,
|
|
start_level,
|
|
end_level,
|
|
add_extra_convs,
|
|
extra_convs_on_inputs,
|
|
relu_before_extra_convs,
|
|
no_norm_on_lateral,
|
|
conv_cfg,
|
|
norm_cfg,
|
|
act_cfg,
|
|
init_cfg=init_cfg)
|
|
# add extra bottom up pathway
|
|
self.downsample_convs = nn.ModuleList()
|
|
self.pafpn_convs = nn.ModuleList()
|
|
for i in range(self.start_level + 1, self.backbone_end_level):
|
|
d_conv = ConvModule(
|
|
out_channels,
|
|
out_channels,
|
|
3,
|
|
stride=2,
|
|
padding=1,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=act_cfg,
|
|
inplace=False)
|
|
pafpn_conv = ConvModule(
|
|
out_channels,
|
|
out_channels,
|
|
3,
|
|
padding=1,
|
|
conv_cfg=conv_cfg,
|
|
norm_cfg=norm_cfg,
|
|
act_cfg=act_cfg,
|
|
inplace=False)
|
|
self.downsample_convs.append(d_conv)
|
|
self.pafpn_convs.append(pafpn_conv)
|
|
|
|
@auto_fp16()
|
|
def forward(self, inputs):
|
|
"""Forward function."""
|
|
assert len(inputs) == len(self.in_channels)
|
|
|
|
# build laterals
|
|
laterals = [
|
|
lateral_conv(inputs[i + self.start_level])
|
|
for i, lateral_conv in enumerate(self.lateral_convs)
|
|
]
|
|
|
|
# build top-down path
|
|
used_backbone_levels = len(laterals)
|
|
for i in range(used_backbone_levels - 1, 0, -1):
|
|
prev_shape = laterals[i - 1].shape[2:]
|
|
laterals[i - 1] += F.interpolate(
|
|
laterals[i], size=prev_shape, mode='nearest')
|
|
|
|
# build outputs
|
|
# part 1: from original levels
|
|
inter_outs = [
|
|
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)
|
|
]
|
|
|
|
# part 2: add bottom-up path
|
|
for i in range(0, used_backbone_levels - 1):
|
|
inter_outs[i + 1] += self.downsample_convs[i](inter_outs[i])
|
|
|
|
outs = []
|
|
outs.append(inter_outs[0])
|
|
outs.extend([
|
|
self.pafpn_convs[i - 1](inter_outs[i])
|
|
for i in range(1, used_backbone_levels)
|
|
])
|
|
|
|
# part 3: add extra levels
|
|
if self.num_outs > len(outs):
|
|
# use max pool to get more levels on top of outputs
|
|
# (e.g., Faster R-CNN, Mask R-CNN)
|
|
if not self.add_extra_convs:
|
|
for i in range(self.num_outs - used_backbone_levels):
|
|
outs.append(F.max_pool2d(outs[-1], 1, stride=2))
|
|
# add conv layers on top of original feature maps (RetinaNet)
|
|
else:
|
|
if self.add_extra_convs == 'on_input':
|
|
orig = inputs[self.backbone_end_level - 1]
|
|
outs.append(self.fpn_convs[used_backbone_levels](orig))
|
|
elif self.add_extra_convs == 'on_lateral':
|
|
outs.append(self.fpn_convs[used_backbone_levels](
|
|
laterals[-1]))
|
|
elif self.add_extra_convs == 'on_output':
|
|
outs.append(self.fpn_convs[used_backbone_levels](outs[-1]))
|
|
else:
|
|
raise NotImplementedError
|
|
for i in range(used_backbone_levels + 1, self.num_outs):
|
|
if self.relu_before_extra_convs:
|
|
outs.append(self.fpn_convs[i](F.relu(outs[-1])))
|
|
else:
|
|
outs.append(self.fpn_convs[i](outs[-1]))
|
|
return tuple(outs)
|