mirror of
https://github.com/hero-y/BHRL.git
synced 2025-06-03 14:49:38 +08:00
149 lines
5.5 KiB
Python
149 lines
5.5 KiB
Python
import argparse
|
|
|
|
import mmcv
|
|
from mmcv import Config, DictAction
|
|
from mmcv.parallel import MMDataParallel
|
|
|
|
from mmdet.apis import single_gpu_test
|
|
from mmdet.datasets import (build_dataloader, build_dataset,
|
|
replace_ImageToTensor)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description='MMDet test (and eval) an ONNX model using ONNXRuntime')
|
|
parser.add_argument('config', help='test config file path')
|
|
parser.add_argument('model', help='Input model file')
|
|
parser.add_argument('--out', help='output result file in pickle format')
|
|
parser.add_argument(
|
|
'--format-only',
|
|
action='store_true',
|
|
help='Format the output results without perform evaluation. It is'
|
|
'useful when you want to format the result to a specific format and '
|
|
'submit it to the test server')
|
|
parser.add_argument(
|
|
'--backend',
|
|
required=True,
|
|
choices=['onnxruntime', 'tensorrt'],
|
|
help='Backend for input model to run. ')
|
|
parser.add_argument(
|
|
'--eval',
|
|
type=str,
|
|
nargs='+',
|
|
help='evaluation metrics, which depends on the dataset, e.g., "bbox",'
|
|
' "segm", "proposal" for COCO, and "mAP", "recall" for PASCAL VOC')
|
|
parser.add_argument('--show', action='store_true', help='show results')
|
|
parser.add_argument(
|
|
'--show-dir', help='directory where painted images will be saved')
|
|
parser.add_argument(
|
|
'--show-score-thr',
|
|
type=float,
|
|
default=0.3,
|
|
help='score threshold (default: 0.3)')
|
|
parser.add_argument(
|
|
'--cfg-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='override some settings in the used config, the key-value pair '
|
|
'in xxx=yyy format will be merged into config file. If the value to '
|
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
|
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
|
'Note that the quotation marks are necessary and that no white space '
|
|
'is allowed.')
|
|
parser.add_argument(
|
|
'--eval-options',
|
|
nargs='+',
|
|
action=DictAction,
|
|
help='custom options for evaluation, the key-value pair in xxx=yyy '
|
|
'format will be kwargs for dataset.evaluate() function')
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
assert args.out or args.eval or args.format_only or args.show \
|
|
or args.show_dir, \
|
|
('Please specify at least one operation (save/eval/format/show the '
|
|
'results / save the results) with the argument "--out", "--eval"'
|
|
', "--format-only", "--show" or "--show-dir"')
|
|
|
|
if args.eval and args.format_only:
|
|
raise ValueError('--eval and --format_only cannot be both specified')
|
|
|
|
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
|
|
raise ValueError('The output file must be a pkl file.')
|
|
|
|
cfg = Config.fromfile(args.config)
|
|
if args.cfg_options is not None:
|
|
cfg.merge_from_dict(args.cfg_options)
|
|
|
|
# in case the test dataset is concatenated
|
|
samples_per_gpu = 1
|
|
if isinstance(cfg.data.test, dict):
|
|
cfg.data.test.test_mode = True
|
|
samples_per_gpu = cfg.data.test.pop('samples_per_gpu', 1)
|
|
if samples_per_gpu > 1:
|
|
# Replace 'ImageToTensor' to 'DefaultFormatBundle'
|
|
cfg.data.test.pipeline = replace_ImageToTensor(
|
|
cfg.data.test.pipeline)
|
|
elif isinstance(cfg.data.test, list):
|
|
for ds_cfg in cfg.data.test:
|
|
ds_cfg.test_mode = True
|
|
samples_per_gpu = max(
|
|
[ds_cfg.pop('samples_per_gpu', 1) for ds_cfg in cfg.data.test])
|
|
if samples_per_gpu > 1:
|
|
for ds_cfg in cfg.data.test:
|
|
ds_cfg.pipeline = replace_ImageToTensor(ds_cfg.pipeline)
|
|
|
|
# build the dataloader
|
|
dataset = build_dataset(cfg.data.test)
|
|
data_loader = build_dataloader(
|
|
dataset,
|
|
samples_per_gpu=samples_per_gpu,
|
|
workers_per_gpu=cfg.data.workers_per_gpu,
|
|
dist=False,
|
|
shuffle=False)
|
|
|
|
if args.backend == 'onnxruntime':
|
|
from mmdet.core.export.model_wrappers import ONNXRuntimeDetector
|
|
model = ONNXRuntimeDetector(
|
|
args.model, class_names=dataset.CLASSES, device_id=0)
|
|
elif args.backend == 'tensorrt':
|
|
from mmdet.core.export.model_wrappers import TensorRTDetector
|
|
output_names = ['dets', 'labels']
|
|
if len(cfg.evaluation['metric']) == 2:
|
|
output_names.append('masks')
|
|
model = TensorRTDetector(
|
|
args.model,
|
|
class_names=dataset.CLASSES,
|
|
device_id=0,
|
|
output_names=output_names)
|
|
|
|
model = MMDataParallel(model, device_ids=[0])
|
|
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
|
|
args.show_score_thr)
|
|
|
|
if args.out:
|
|
print(f'\nwriting results to {args.out}')
|
|
mmcv.dump(outputs, args.out)
|
|
kwargs = {} if args.eval_options is None else args.eval_options
|
|
if args.format_only:
|
|
dataset.format_results(outputs, **kwargs)
|
|
if args.eval:
|
|
eval_kwargs = cfg.get('evaluation', {}).copy()
|
|
# hard-code way to remove EvalHook args
|
|
for key in [
|
|
'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
|
|
'rule'
|
|
]:
|
|
eval_kwargs.pop(key, None)
|
|
eval_kwargs.update(dict(metric=args.eval, **kwargs))
|
|
print(dataset.evaluate(outputs, **eval_kwargs))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|