1
0
mirror of https://github.com/hero-y/BHRL.git synced 2025-06-03 14:49:38 +08:00
BHRL/tools/test.py
2022-06-06 21:52:40 +08:00

222 lines
8.3 KiB
Python

import argparse
import os
import os.path as osp
import shutil
import tempfile
import time
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
from mmdet.core import coco_eval, results2json
from mmdet.datasets import (build_dataloader, build_dataset,
replace_ImageToTensor)
from mmdet.models import build_detector
import numpy as np
def multi_gpu_test(model, data_loader, tmpdir=None):
model.eval()
results = []
img_ids = []
img_labels = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
results.extend(result)
img_id = data['img_metas'][0].data[0][0]['img_info']['id']
label = data['img_metas'][0].data[0][0]['label']
img_ids.append(img_id)
img_labels.append(label)
if rank == 0:
batch_size = data['img'][0][0].size(0)
for _ in range(batch_size * world_size):
prog_bar.update()
# collect results from all ranks
results, img_ids, img_labels = collect_results_id(results, len(dataset), img_ids, img_labels, tmpdir)
return results, img_ids, img_labels
def collect_results_id(result_part, size, img_ids_part, img_labels_part, tmpdir=None):
rank, world_size = get_dist_info()
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ),
32,
dtype=torch.uint8,
device='cuda')
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
dir_tensor[:len(tmpdir)] = tmpdir
dist.broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
else:
mmcv.mkdir_or_exist(tmpdir)
# dump the part result to the dir
mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
mmcv.dump(img_ids_part, osp.join(tmpdir, 'id_part_{}.pkl'.format(rank)))
mmcv.dump(img_labels_part, osp.join(tmpdir, 'label_part_{}.pkl'.format(rank)))
dist.barrier()
# collect all parts
if rank != 0:
return None, None, None
else:
# load results of all parts from tmp dir
part_list = []
id_part_list = []
label_part_list = []
for i in range(world_size):
part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
id_part = osp.join(tmpdir, 'id_part_{}.pkl'.format(i))
label_part = osp.join(tmpdir, 'label_part_{}.pkl'.format(i))
part_list.append(mmcv.load(part_file))
id_part_list.append(mmcv.load(id_part))
label_part_list.append(mmcv.load(label_part))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
ordered_ids = []
for res in zip(*id_part_list):
ordered_ids.extend(list(res))
ordered_labels = []
for res in zip(*label_part_list):
ordered_labels.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
ordered_ids = ordered_ids[:size]
ordered_labels = ordered_labels[:size]
# remove tmp dir
shutil.rmtree(tmpdir)
return ordered_results, ordered_ids, ordered_labels
def parse_args():
parser = argparse.ArgumentParser(description='BHRL test detector')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file')
parser.add_argument(
'--json_out',
help='output result file name without extension',
type=str)
parser.add_argument(
'--eval',
type=str,
nargs='+',
choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
help='eval types')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--average', type=int, default=1)
parser.add_argument('--test_seen_classes', action='store_true', help='test seen classes')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
assert args.out or args.show or args.json_out, \
('Please specify at least one operation (save or show the results) '
'with the argument "--out" or "--show" or "--json_out"')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
if args.json_out is not None and args.json_out.endswith('.json'):
args.json_out = args.json_out[:-5]
avg = args.average
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
if args.test_seen_classes:
cfg.data.test.test_seen_classes = True
else:
cfg.data.test.test_seen_classes = False
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
for i in range(avg):
cfg.data.test.position = i
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
samples_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
if 'CLASSES' in checkpoint['meta']:
model.CLASSES = checkpoint['meta']['CLASSES']
else:
model.CLASSES = dataset.CLASSES
# --------------------------------
model.CLASSES = dataset.CLASSES
# --------------------------------
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
outputs, img_ids, img_labels = multi_gpu_test(model, data_loader, args.tmpdir)
rank, _ = get_dist_info()
if args.out and rank == 0:
print('\nwriting results to {}'.format(args.out))
mmcv.dump(outputs, args.out)
eval_types = args.eval
if eval_types:
print('Starting evaluate {}'.format(' and '.join(eval_types)))
if eval_types == ['proposal_fast']:
result_file = args.out
coco_eval(result_file, eval_types, dataset.coco)
else:
if not isinstance(outputs[0], dict):
result_files = results2json(dataset, outputs, img_ids, img_labels, args.out)
coco_eval(result_files, eval_types, dataset.coco, img_ids=img_ids, img_labels=img_labels)
if __name__ == '__main__':
main()