DCL/README.md

109 lines
3.2 KiB
Markdown
Raw Normal View History

2019-04-03 18:32:55 +08:00
# Destruction and Construction Learning for Fine-grained Image Recognition
By Yue Chen, Yalong Bai, Wei Zhang, Tao Mei
2019-06-21 18:43:04 +08:00
2019-06-21 18:42:42 +08:00
Speical thanks to [Yuanzhi Liang](https://github.com/akira-l) for code refactoring.
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
## Introduction
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
This project is a DCL pytorch implementation of [*Destruction and Construction Learning for Fine-grained Image Recognition*](http://openaccess.thecvf.com/content_CVPR_2019/html/Chen_Destruction_and_Construction_Learning_for_Fine-Grained_Image_Recognition_CVPR_2019_paper.html) accepted by CVPR2019.
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
## Requirements
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
1. Python 3.6
2. Pytorch 0.4.0 or 0.4.1
3. CUDA 8.0 or higher
For docker environment:
2019-04-03 18:32:55 +08:00
```shell
2019-06-20 17:38:11 +08:00
docker: pull pytorch/pytorch:0.4-cuda9-cudnn7-devel
2019-04-03 18:32:55 +08:00
```
2019-06-20 17:38:11 +08:00
For conda environment:
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
```shell
conda create --name DCL file conda_list.txt
```
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
## Datasets Prepare
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
1. Download correspond dataset to folder 'datasets'
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
2. Data organization: eg. CUB
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
All the image data are in './datasets/CUB/data/'
e.g. './datasets/CUB/data/*.jpg'
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
The annotation files are in './datasets/CUB/anno/'
e.g. './dataset/CUB/data/train.txt'
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
In annotations:
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
```shell
name_of_image.jpg label_num\n
```
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
e.g. for CUB in repository:
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
```shell
Black_Footed_Albatross_0009_34.jpg 0
Black_Footed_Albatross_0014_89.jpg 0
Laysan_Albatross_0044_784.jpg 1
Sooty_Albatross_0021_796339.jpg 2
...
```
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
Some examples of datasets like CUB, Stanford Car, etc. are already given in our repository. You can use DCL to your datasets by simply converting annotations to train.txt/val.txt/test.txt and modify the class number in `config.py` as in line67: numcls=200.
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
## Training
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
Run `train.py` to train DCL.
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
For training CUB / STCAR / AIR from scratch
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
```shell
python train.py --data CUB --epoch 360 --backbone resnet50 \
--tb 16 --tnw 16 --vb 512 --vnw 16 \
--lr 0.008 --lr_step 60 \
--cls_lr_ratio 10 --start_epoch 0 \
--detail training_descibe --size 512 \
--crop 448 --cls_mul --swap_num 7 7
```
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
For training CUB / STCAR / AIR from trained checkpoint
2019-04-03 18:32:55 +08:00
2019-06-20 17:38:11 +08:00
```shell
python train.py --data CUB --epoch 360 --backbone resnet50 \
--tb 16 --tnw 16 --vb 512 --vnw 16 \
--lr 0.008 --lr_step 60 \
--cls_lr_ratio 10 --start_epoch $LAST_EPOCH \
--detail training_descibe4checkpoint --size 512 \
--crop 448 --cls_mul --swap_num 7 7
```
For training FGVC product datasets from scratch
```shell
python train.py --data product --epoch 60 --backbone senet154 \
--tb 96 --tnw 32 --vb 512 --vnw 32 \
--lr 0.01 --lr_step 12 \
--cls_lr_ratio 10 --start_epoch 0 \
--detail training_descibe --size 512 \
--crop 448 --cls_2 --swap_num 7 7
```
For training FGVC datasets from trained checkpoint
```shell
python train.py --data product --epoch 60 --backbone senet154 \
--tb 96 --tnw 32 --vb 512 --vnw 32 \
--lr 0.01 --lr_step 12 \
--cls_lr_ratio 10 --start_epoch $LAST_EPOCH \
--detail training_descibe4checkpoint --size 512 \
--crop 448 --cls_2 --swap_num 7 7
```