elder_master
chenyue93 2019-04-03 18:32:55 +08:00
parent 73406c1ec9
commit 98fe18e5f9
13 changed files with 2572 additions and 0 deletions

BIN
.DS_Store vendored 100644

Binary file not shown.

115
CUB_test.py 100644
View File

@ -0,0 +1,115 @@
#oding=utf-8
import os
import pandas as pd
from sklearn.model_selection import train_test_split
from dataset.dataset_CUB_test import collate_fn1, collate_fn2, dataset
import torch
import torch.nn as nn
from torchvision import datasets, models
from transforms import transforms
from torch.nn import CrossEntropyLoss
from models.resnet_swap_2loss_add import resnet_swap_2loss_add
from math import ceil
from torch.autograd import Variable
from tqdm import tqdm
import numpy as np
cfg = {}
cfg['dataset'] = 'CUB'
# prepare dataset
if cfg['dataset'] == 'CUB':
rawdata_root = './datasets/CUB_200_2011/all'
train_pd = pd.read_csv("./datasets/CUB_200_2011/train.txt",sep=" ",header=None, names=['ImageName', 'label'])
train_pd, val_pd = train_test_split(train_pd, test_size=0.90, random_state=43,stratify=train_pd['label'])
test_pd = pd.read_csv("./datasets/CUB_200_2011/test.txt",sep=" ",header=None, names=['ImageName', 'label'])
cfg['numcls'] = 200
numimage = 6033
if cfg['dataset'] == 'STCAR':
rawdata_root = './datasets/st_car/all'
train_pd = pd.read_csv("./datasets/st_car/train.txt",sep=" ",header=None, names=['ImageName', 'label'])
test_pd = pd.read_csv("./datasets/st_car/test.txt",sep=" ",header=None, names=['ImageName', 'label'])
cfg['numcls'] = 196
numimage = 8144
if cfg['dataset'] == 'AIR':
rawdata_root = './datasets/aircraft/all'
train_pd = pd.read_csv("./datasets/aircraft/train.txt",sep=" ",header=None, names=['ImageName', 'label'])
test_pd = pd.read_csv("./datasets/aircraft/test.txt",sep=" ",header=None, names=['ImageName', 'label'])
cfg['numcls'] = 100
numimage = 6667
print('Set transform')
data_transforms = {
'totensor': transforms.Compose([
transforms.Resize((448,448)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]),
'None': transforms.Compose([
transforms.Resize((512,512)),
transforms.CenterCrop((448,448)),
]),
}
data_set = {}
data_set['val'] = dataset(cfg,imgroot=rawdata_root,anno_pd=test_pd,
unswap=data_transforms["None"],swap=data_transforms["None"],totensor=data_transforms["totensor"],train=False
)
dataloader = {}
dataloader['val']=torch.utils.data.DataLoader(data_set['val'], batch_size=4,
shuffle=False, num_workers=4,collate_fn=collate_fn1)
model = resnet_swap_2loss_add(num_classes=cfg['numcls'])
model.cuda()
model = nn.DataParallel(model)
resume = './cub_model.pth'
pretrained_dict=torch.load(resume)
model_dict=model.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
criterion = CrossEntropyLoss()
model.train(False)
val_corrects1 = 0
val_corrects2 = 0
val_corrects3 = 0
val_size = ceil(len(data_set['val']) / dataloader['val'].batch_size)
for batch_cnt_val, data_val in tqdm(enumerate(dataloader['val'])):
#print('testing')
inputs, labels, labels_swap = data_val
inputs = Variable(inputs.cuda())
labels = Variable(torch.from_numpy(np.array(labels)).long().cuda())
labels_swap = Variable(torch.from_numpy(np.array(labels_swap)).long().cuda())
# forward
if len(inputs)==1:
inputs = torch.cat((inputs,inputs))
labels = torch.cat((labels,labels))
labels_swap = torch.cat((labels_swap,labels_swap))
outputs = model(inputs)
outputs1 = outputs[0] + outputs[1][:,0:cfg['numcls']] + outputs[1][:,cfg['numcls']:2*cfg['numcls']]
outputs2 = outputs[0]
outputs3 = outputs[1][:,0:cfg['numcls']] + outputs[1][:,cfg['numcls']:2*cfg['numcls']]
_, preds1 = torch.max(outputs1, 1)
_, preds2 = torch.max(outputs2, 1)
_, preds3 = torch.max(outputs3, 1)
batch_corrects1 = torch.sum((preds1 == labels)).data.item()
batch_corrects2 = torch.sum((preds2 == labels)).data.item()
batch_corrects3 = torch.sum((preds3 == labels)).data.item()
val_corrects1 += batch_corrects1
val_corrects2 += batch_corrects2
val_corrects3 += batch_corrects3
val_acc1 = 0.5 * val_corrects1 / len(data_set['val'])
val_acc2 = 0.5 * val_corrects2 / len(data_set['val'])
val_acc3 = 0.5 * val_corrects3 / len(data_set['val'])
print("cls&adv acc:", val_acc1, "cls acc:", val_acc2,"adv acc:", val_acc1)

86
LICENSE 100644
View File

@ -0,0 +1,86 @@
Copyright [2019], [京东JD.com JD AI]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
----------------------------------------------------------------------------------------------------------
From PyTorch:
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
From Caffe2:
Copyright (c) 2016-present, Facebook Inc. All rights reserved.
All contributions by Facebook:
Copyright (c) 2016 Facebook Inc.
All contributions by Google:
Copyright (c) 2015 Google Inc.
All rights reserved.
All contributions by Yangqing Jia:
Copyright (c) 2015 Yangqing Jia
All rights reserved.
All contributions from Caffe:
Copyright(c) 2013, 2014, 2015, the respective contributors
All rights reserved.
All other contributions:
Copyright(c) 2015, 2016 the respective contributors
All rights reserved.
Caffe2 uses a copyright model similar to Caffe: each contributor holds
copyright over their contributions to Caffe2. The project versioning records
all such contribution and copyright details. If a contributor wants to further
mark their specific copyright on a particular contribution, they should
indicate their copyright solely in the commit message of the change when it is
committed.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
and IDIAP Research Institute nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

58
README.md 100644
View File

@ -0,0 +1,58 @@
# Destruction and Construction Learning for Fine-grained Image Recognition
By Yue Chen, Yalong Bai, Wei Zhang, Tao Mei
### Introduction
This code is relative to the [DCL](https://arxiv.org/), which is accepted on CVPR 2019.
This DCL code in this repo is written based on Pytorch 0.4.0.
This code has been tested on Ubuntu 16.04.3 LTS with Python 3.6.5 and CUDA 9.0.
Yuo can use this public docker image as the test environment:
```shell
docker pull pytorch/pytorch:0.4-cuda9-cudnn7-devel
```
### Citing DCL
If you find this repo useful in your research, please consider citing:
@article{chen2019dcl,
title={Destruction and Construction Learning for Fine-grained Image Recognition},
author={Chen Yue and Bai, Yalong and Zhang Wei and Mei Tao},
journal={arXiv preprint arXiv:},
year={2019}
}
### Requirements
0. Pytorch 0.4.0
0. Numpy, Pillow, Pandas
0. GPU: P40, etc. (May have bugs on the latest V100 GPU)
### Datasets Prepare
0. Download CUB-200-2011 dataset form [Caltech-UCSD Birds-200-2011](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html)
0. Unzip the dataset file under the folder 'datasets'
0. Run ./datasets/CUB_pre.py to generate annotation files 'train.txt', 'test.txt' and image folder 'all' for CUB-200-2011 dataset
### Testing Demo
0. Download `CUB_model.pth` from [Google Drive](https://drive.google.com/file/d/1xWMOi5hADm1xMUl5dDLeP6cfjZit6nQi/view?usp=sharing).
0. Run `CUB_test.py`
### Training on CUB-200-2011
0. Run `train.py` to train and test the CUB-200-2011 datasets. Wait about half day for training and testing.
0. Hopefully it would give the evaluation results around ~87.8% acc after running.
**Support for other datasets will be updated later**

View File

@ -0,0 +1,65 @@
# coding=utf8
from __future__ import division
import os
import torch
import torch.utils.data as data
import PIL.Image as Image
from PIL import ImageStat
class dataset(data.Dataset):
def __init__(self, cfg, imgroot, anno_pd, unswap=None, swap=None, totensor=None, train=False):
self.root_path = imgroot
self.paths = anno_pd['ImageName'].tolist()
self.labels = anno_pd['label'].tolist()
self.unswap = unswap
self.swap = swap
self.totensor = totensor
self.cfg = cfg
self.train = train
def __len__(self):
return len(self.paths)
def __getitem__(self, item):
img_path = os.path.join(self.root_path, self.paths[item])
img = self.pil_loader(img_path)
img_unswap = self.unswap(img)
img_unswap = self.totensor(img_unswap)
img_swap = img_unswap
label = self.labels[item]-1
label_swap = label
return img_unswap, img_swap, label, label_swap
def pil_loader(self,imgpath):
with open(imgpath, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def collate_fn1(batch):
imgs = []
label = []
label_swap = []
swap_law = []
for sample in batch:
imgs.append(sample[0])
imgs.append(sample[1])
label.append(sample[2])
label.append(sample[2])
label_swap.append(sample[2])
label_swap.append(sample[3])
# swap_law.append(sample[4])
# swap_law.append(sample[5])
return torch.stack(imgs, 0), label, label_swap # , swap_law
def collate_fn2(batch):
imgs = []
label = []
label_swap = []
swap_law = []
for sample in batch:
imgs.append(sample[0])
label.append(sample[2])
swap_law.append(sample[4])
return torch.stack(imgs, 0), label, label_swap, swap_law

View File

@ -0,0 +1,95 @@
# coding=utf8
from __future__ import division
import os
import torch
import torch.utils.data as data
import PIL.Image as Image
from PIL import ImageStat
class dataset(data.Dataset):
def __init__(self, cfg, imgroot, anno_pd, unswap=None, swap=None, totensor=None, train=False):
self.root_path = imgroot
self.paths = anno_pd['ImageName'].tolist()
self.labels = anno_pd['label'].tolist()
self.unswap = unswap
self.swap = swap
self.totensor = totensor
self.cfg = cfg
self.train = train
def __len__(self):
return len(self.paths)
def __getitem__(self, item):
img_path = os.path.join(self.root_path, self.paths[item])
img = self.pil_loader(img_path)
crop_num = [7, 7]
img_unswap = self.unswap(img)
image_unswap_list = self.crop_image(img_unswap,crop_num)
img_unswap = self.totensor(img_unswap)
swap_law1 = [(i-24)/49 for i in range(crop_num[0]*crop_num[1])]
if self.train:
img_swap = self.swap(img)
image_swap_list = self.crop_image(img_swap,crop_num)
unswap_stats = [sum(ImageStat.Stat(im).mean) for im in image_unswap_list]
swap_stats = [sum(ImageStat.Stat(im).mean) for im in image_swap_list]
swap_law2 = []
for swap_im in swap_stats:
distance = [abs(swap_im - unswap_im) for unswap_im in unswap_stats]
index = distance.index(min(distance))
swap_law2.append((index-24)/49)
img_swap = self.totensor(img_swap)
label = self.labels[item]-1
label_swap = label + self.cfg['numcls']
else:
img_swap = img_unswap
label = self.labels[item]-1
label_swap = label
swap_law2 = [(i-24)/49 for i in range(crop_num[0]*crop_num[1])]
return img_unswap, img_swap, label, label_swap, swap_law1, swap_law2
def pil_loader(self,imgpath):
with open(imgpath, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
def crop_image(self, image, cropnum):
width, high = image.size
crop_x = [int((width / cropnum[0]) * i) for i in range(cropnum[0] + 1)]
crop_y = [int((high / cropnum[1]) * i) for i in range(cropnum[1] + 1)]
im_list = []
for j in range(len(crop_y) - 1):
for i in range(len(crop_x) - 1):
im_list.append(image.crop((crop_x[i], crop_y[j], min(crop_x[i + 1], width), min(crop_y[j + 1], high))))
return im_list
def collate_fn1(batch):
imgs = []
label = []
label_swap = []
swap_law = []
for sample in batch:
imgs.append(sample[0])
imgs.append(sample[1])
label.append(sample[2])
label.append(sample[2])
label_swap.append(sample[2])
label_swap.append(sample[3])
swap_law.append(sample[4])
swap_law.append(sample[5])
return torch.stack(imgs, 0), label, label_swap, swap_law
def collate_fn2(batch):
imgs = []
label = []
label_swap = []
swap_law = []
for sample in batch:
imgs.append(sample[0])
label.append(sample[2])
swap_law.append(sample[4])
return torch.stack(imgs, 0), label, label_swap, swap_law

View File

@ -0,0 +1,66 @@
import shutil
import os
train_test_set_file = open('./CUB_200_2011/train_test_split.txt')
train_list = []
test_list = []
for line in train_test_set_file:
tmp = line.strip().split()
if tmp[1] == '1':
train_list.append(tmp[0])
else:
test_list.append(tmp[0])
# print(len(train_list))
# print('^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^')
# print(len(test_list))
train_test_set_file.close()
images_file = open('./CUB_200_2011/images.txt')
images_dict = {}
for line in images_file:
tmp = line.strip().split()
images_dict[tmp[0]] = tmp[1]
# print(images_dict)
images_file.close()
# prepare for train subset
for image_id in train_list:
read_path = './CUB_200_2011/images/'
train_write_path = './CUB_200_2011/all/'
read_path = read_path + images_dict[image_id]
train_write_path = train_write_path + os.path.split(images_dict[image_id])[1]
# print(train_write_path)
shutil.copyfile(read_path, train_write_path)
# prepare for test subset
for image_id in test_list:
read_path = './CUB_200_2011/images/'
test_write_path = './CUB_200_2011/all/'
read_path = read_path + images_dict[image_id]
test_write_path = test_write_path + os.path.split(images_dict[image_id])[1]
# print(train_write_path)
shutil.copyfile(read_path, test_write_path)
class_file = open('./CUB_200_2011/image_class_labels.txt')
class_dict = {}
for line in class_file:
tmp = line.strip().split()
class_dict[tmp[0]] = tmp[1]
class_file.close()
# create train.txt
train_file = open('./CUB_200_2011/train.txt', 'a')
for image_id in train_list:
train_file.write(os.path.split(images_dict[image_id])[1])
train_file.write(' ')
train_file.write(class_dict[image_id])
train_file.write('\n')
train_file.close()
test_file = open('./CUB_200_2011/test.txt', 'a')
for image_id in test_list:
test_file.write(os.path.split(images_dict[image_id])[1])
test_file.write(' ')
test_file.write(class_dict[image_id])
test_file.write('\n')
test_file.close()

View File

@ -0,0 +1,42 @@
from torch import nn
import torch
from torchvision import models, transforms, datasets
import torch.nn.functional as F
class resnet_swap_2loss_add(nn.Module):
def __init__(self, num_classes):
super(resnet_swap_2loss_add,self).__init__()
resnet50 = models.resnet50(pretrained=True)
self.stage1_img = nn.Sequential(*list(resnet50.children())[:5])
self.stage2_img = nn.Sequential(*list(resnet50.children())[5:6])
self.stage3_img = nn.Sequential(*list(resnet50.children())[6:7])
self.stage4_img = nn.Sequential(*list(resnet50.children())[7])
self.avgpool = nn.AdaptiveAvgPool2d(output_size=1)
self.classifier = nn.Linear(2048, num_classes)
self.classifier_swap = nn.Linear(2048, 2*num_classes)
# self.classifier_swap = nn.Linear(2048, 2)
self.Convmask = nn.Conv2d(2048, 1, 1, stride=1, padding=0, bias=False)
self.avgpool2 = nn.AvgPool2d(2,stride=2)
def forward(self, x):
x2 = self.stage1_img(x)
x3 = self.stage2_img(x2)
x4 = self.stage3_img(x3)
x5 = self.stage4_img(x4)
x = x5
mask = self.Convmask(x)
mask = self.avgpool2(mask)
mask = F.tanh(mask)
mask = mask.view(mask.size(0),-1)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
out = []
out.append(self.classifier(x))
out.append(self.classifier_swap(x))
out.append(mask)
return out

136
train_rel.py 100644
View File

@ -0,0 +1,136 @@
#oding=utf-8
import os
import datetime
import pandas as pd
from dataset.dataset_DCL import collate_fn1, collate_fn2, dataset
import torch
import torch.nn as nn
import torch.utils.data as torchdata
from torchvision import datasets, models
from transforms import transforms
import torch.optim as optim
from torch.optim import lr_scheduler
from utils.train_util_DCL import train, trainlog
from torch.nn import CrossEntropyLoss
import logging
from models.resnet_swap_2loss_add import resnet_swap_2loss_add
cfg = {}
time = datetime.datetime.now()
# set dataset, include{CUB, STCAR, AIR}
cfg['dataset'] = 'CUB'
# prepare dataset
if cfg['dataset'] == 'CUB':
rawdata_root = './datasets/CUB_200_2011/all'
train_pd = pd.read_csv("./datasets/CUB_200_2011/train.txt",sep=" ",header=None, names=['ImageName', 'label'])
test_pd = pd.read_csv("./datasets/CUB_200_2011/test.txt",sep=" ",header=None, names=['ImageName', 'label'])
cfg['numcls'] = 200
numimage = 6033
if cfg['dataset'] == 'STCAR':
rawdata_root = './datasets/st_car/all'
train_pd = pd.read_csv("./datasets/st_car/train.txt",sep=" ",header=None, names=['ImageName', 'label'])
test_pd = pd.read_csv("./datasets/st_car/test.txt",sep=" ",header=None, names=['ImageName', 'label'])
cfg['numcls'] = 196
numimage = 8144
if cfg['dataset'] == 'AIR':
rawdata_root = './datasets/aircraft/all'
train_pd = pd.read_csv("./datasets/aircraft/train.txt",sep=" ",header=None, names=['ImageName', 'label'])
test_pd = pd.read_csv("./datasets/aircraft/test.txt",sep=" ",header=None, names=['ImageName', 'label'])
cfg['numcls'] = 100
numimage = 6667
print('Dataset:',cfg['dataset'])
print('train images:', train_pd.shape)
print('test images:', test_pd.shape)
print('num classes:', cfg['numcls'])
print('Set transform')
cfg['swap_num'] = 7
data_transforms = {
'swap': transforms.Compose([
transforms.Resize((512,512)),
transforms.RandomRotation(degrees=15),
transforms.RandomCrop((448,448)),
transforms.RandomHorizontalFlip(),
transforms.Randomswap((cfg['swap_num'],cfg['swap_num'])),
]),
'unswap': transforms.Compose([
transforms.Resize((512,512)),
transforms.RandomRotation(degrees=15),
transforms.RandomCrop((448,448)),
transforms.RandomHorizontalFlip(),
]),
'totensor': transforms.Compose([
transforms.Resize((448,448)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]),
'None': transforms.Compose([
transforms.Resize((512,512)),
transforms.CenterCrop((448,448)),
]),
}
data_set = {}
data_set['train'] = dataset(cfg,imgroot=rawdata_root,anno_pd=train_pd,
unswap=data_transforms["unswap"],swap=data_transforms["swap"],totensor=data_transforms["totensor"],train=True
)
data_set['val'] = dataset(cfg,imgroot=rawdata_root,anno_pd=test_pd,
unswap=data_transforms["None"],swap=data_transforms["None"],totensor=data_transforms["totensor"],train=False
)
dataloader = {}
dataloader['train']=torch.utils.data.DataLoader(data_set['train'], batch_size=16,
shuffle=True, num_workers=16,collate_fn=collate_fn1)
dataloader['val']=torch.utils.data.DataLoader(data_set['val'], batch_size=16,
shuffle=True, num_workers=16,collate_fn=collate_fn1)
print('Set cache dir')
filename = str(time.month) + str(time.day) + str(time.hour) + '_' + cfg['dataset']
save_dir = './net_model/' + filename
if not os.path.exists(save_dir):
os.makedirs(save_dir)
logfile = save_dir + '/' + filename +'.log'
trainlog(logfile)
print('Choose model and train set')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = resnet_swap_2loss_add(num_classes=cfg['numcls'])
base_lr = 0.0008
resume = None
if resume:
logging.info('resuming finetune from %s'%resume)
model.load_state_dict(torch.load(resume))
model.cuda()
model = nn.DataParallel(model)
model.to(device)
# set new layer's lr
ignored_params1 = list(map(id, model.module.classifier.parameters()))
ignored_params2 = list(map(id, model.module.classifier_swap.parameters()))
ignored_params3 = list(map(id, model.module.Convmask.parameters()))
ignored_params = ignored_params1 + ignored_params2 + ignored_params3
print('the num of new layers:', len(ignored_params))
base_params = filter(lambda p: id(p) not in ignored_params, model.module.parameters())
optimizer = optim.SGD([{'params': base_params},
{'params': model.module.classifier.parameters(), 'lr': base_lr*10},
{'params': model.module.classifier_swap.parameters(), 'lr': base_lr*10},
{'params': model.module.Convmask.parameters(), 'lr': base_lr*10},
], lr = base_lr, momentum=0.9)
criterion = CrossEntropyLoss()
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.1)
train(cfg,
model,
epoch_num=360,
start_epoch=0,
optimizer=optimizer,
criterion=criterion,
exp_lr_scheduler=exp_lr_scheduler,
data_set=data_set,
data_loader=dataloader,
save_dir=save_dir,
print_inter=int(numimage/(4*16)),
val_inter=int(numimage/(16)),)

View File

@ -0,0 +1 @@
from .transforms import *

View File

@ -0,0 +1,750 @@
from __future__ import division
import torch
import math
import random
from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION
try:
import accimage
except ImportError:
accimage = None
import numpy as np
import numbers
import types
import collections
import warnings
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def _is_tensor_image(img):
return torch.is_tensor(img) and img.ndimension() == 3
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def to_tensor(pic):
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
See ``ToTensor`` for more details.
Args:
pic (PIL Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if not(_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
# handle numpy array
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
if isinstance(img, torch.ByteTensor):
return img.float().div(255)
else:
return img
if accimage is not None and isinstance(pic, accimage.Image):
nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
pic.copyto(nppic)
return torch.from_numpy(nppic)
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
elif pic.mode == 'F':
img = torch.from_numpy(np.array(pic, np.float32, copy=False))
elif pic.mode == '1':
img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float().div(255)
else:
return img
def to_pil_image(pic, mode=None):
"""Convert a tensor or an ndarray to PIL Image.
See :class:`~torchvision.transforms.ToPIlImage` for more details.
Args:
pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
.. _PIL.Image mode: http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#modes
Returns:
PIL Image: Image converted to PIL Image.
"""
if not(_is_numpy_image(pic) or _is_tensor_image(pic)):
raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))
npimg = pic
if isinstance(pic, torch.FloatTensor):
pic = pic.mul(255).byte()
if torch.is_tensor(pic):
npimg = np.transpose(pic.numpy(), (1, 2, 0))
if not isinstance(npimg, np.ndarray):
raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
'not {}'.format(type(npimg)))
if npimg.shape[2] == 1:
expected_mode = None
npimg = npimg[:, :, 0]
if npimg.dtype == np.uint8:
expected_mode = 'L'
elif npimg.dtype == np.int16:
expected_mode = 'I;16'
elif npimg.dtype == np.int32:
expected_mode = 'I'
elif npimg.dtype == np.float32:
expected_mode = 'F'
if mode is not None and mode != expected_mode:
raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
.format(mode, np.dtype, expected_mode))
mode = expected_mode
elif npimg.shape[2] == 4:
permitted_4_channel_modes = ['RGBA', 'CMYK']
if mode is not None and mode not in permitted_4_channel_modes:
raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))
if mode is None and npimg.dtype == np.uint8:
mode = 'RGBA'
else:
permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
if mode is not None and mode not in permitted_3_channel_modes:
raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
if mode is None and npimg.dtype == np.uint8:
mode = 'RGB'
if mode is None:
raise TypeError('Input type {} is not supported'.format(npimg.dtype))
return Image.fromarray(npimg, mode=mode)
def normalize(tensor, mean, std):
"""Normalize a tensor image with mean and standard deviation.
See ``Normalize`` for more details.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channely.
Returns:
Tensor: Normalized Tensor image.
"""
if not _is_tensor_image(tensor):
raise TypeError('tensor is not a torch image.')
# TODO: make efficient
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor
def resize(img, size, interpolation=Image.BILINEAR):
"""Resize the input PIL Image to the given size.
Args:
img (PIL Image): Image to be resized.
size (sequence or int): Desired output size. If size is a sequence like
(h, w), the output size will be matched to this. If size is an int,
the smaller edge of the image will be matched to this number maintaing
the aspect ratio. i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
Returns:
PIL Image: Resized image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if not (isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size[::-1], interpolation)
def scale(*args, **kwargs):
warnings.warn("The use of the transforms.Scale transform is deprecated, " +
"please use transforms.Resize instead.")
return resize(*args, **kwargs)
def pad(img, padding, fill=0, padding_mode='constant'):
"""Pad the given PIL Image on all sides with speficified padding mode and fill value.
Args:
img (PIL Image): Image to be padded.
padding (int or tuple): Padding on each border. If a single int is provided this
is used to pad all borders. If tuple of length 2 is provided this is the padding
on left/right and top/bottom respectively. If a tuple of length 4 is provided
this is the padding for the left, top, right and bottom borders
respectively.
fill: Pixel fill value for constant fill. Default is 0. If a tuple of
length 3, it is used to fill R, G, B channels respectively.
This value is only used when the padding_mode is constant
padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
constant: pads with a constant value, this value is specified with fill
edge: pads with the last value on the edge of the image
reflect: pads with reflection of image (without repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
will result in [3, 2, 1, 2, 3, 4, 3, 2]
symmetric: pads with reflection of image (repeating the last value on the edge)
padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
will result in [2, 1, 1, 2, 3, 4, 4, 3]
Returns:
PIL Image: Padded image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if not isinstance(padding, (numbers.Number, tuple)):
raise TypeError('Got inappropriate padding arg')
if not isinstance(fill, (numbers.Number, str, tuple)):
raise TypeError('Got inappropriate fill arg')
if not isinstance(padding_mode, str):
raise TypeError('Got inappropriate padding_mode arg')
if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]:
raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
"{} element tuple".format(len(padding)))
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
'Padding mode should be either constant, edge, reflect or symmetric'
if padding_mode == 'constant':
return ImageOps.expand(img, border=padding, fill=fill)
else:
if isinstance(padding, int):
pad_left = pad_right = pad_top = pad_bottom = padding
if isinstance(padding, collections.Sequence) and len(padding) == 2:
pad_left = pad_right = padding[0]
pad_top = pad_bottom = padding[1]
if isinstance(padding, collections.Sequence) and len(padding) == 4:
pad_left = padding[0]
pad_top = padding[1]
pad_right = padding[2]
pad_bottom = padding[3]
img = np.asarray(img)
# RGB image
if len(img.shape) == 3:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right), (0, 0)), padding_mode)
# Grayscale image
if len(img.shape) == 2:
img = np.pad(img, ((pad_top, pad_bottom), (pad_left, pad_right)), padding_mode)
return Image.fromarray(img)
def crop(img, i, j, h, w):
"""Crop the given PIL Image.
Args:
img (PIL Image): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
Returns:
PIL Image: Cropped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.crop((j, i, j + w, i + h))
def center_crop(img, output_size):
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
w, h = img.size
th, tw = output_size
i = int(round((h - th) / 2.))
j = int(round((w - tw) / 2.))
return crop(img, i, j, th, tw)
def resized_crop(img, i, j, h, w, size, interpolation=Image.BILINEAR):
"""Crop the given PIL Image and resize it to desired size.
Notably used in RandomResizedCrop.
Args:
img (PIL Image): Image to be cropped.
i: Upper pixel coordinate.
j: Left pixel coordinate.
h: Height of the cropped image.
w: Width of the cropped image.
size (sequence or int): Desired output size. Same semantics as ``scale``.
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``.
Returns:
PIL Image: Cropped image.
"""
assert _is_pil_image(img), 'img should be PIL Image'
img = crop(img, i, j, h, w)
img = resize(img, size, interpolation)
return img
def hflip(img):
"""Horizontally flip the given PIL Image.
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Horizontall flipped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.transpose(Image.FLIP_LEFT_RIGHT)
def vflip(img):
"""Vertically flip the given PIL Image.
Args:
img (PIL Image): Image to be flipped.
Returns:
PIL Image: Vertically flipped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.transpose(Image.FLIP_TOP_BOTTOM)
def swap(img, crop):
def crop_image(image, cropnum):
width, high = image.size
crop_x = [int((width / cropnum[0]) * i) for i in range(cropnum[0] + 1)]
crop_y = [int((high / cropnum[1]) * i) for i in range(cropnum[1] + 1)]
im_list = []
for j in range(len(crop_y) - 1):
for i in range(len(crop_x) - 1):
im_list.append(image.crop((crop_x[i], crop_y[j], min(crop_x[i + 1], width), min(crop_y[j + 1], high))))
return im_list
widthcut, highcut = img.size
img = img.crop((10, 10, widthcut-10, highcut-10))
images = crop_image(img, crop)
pro = 5
if pro >= 5:
tmpx = []
tmpy = []
count_x = 0
count_y = 0
k = 1
RAN = 2
for i in range(crop[1] * crop[0]):
tmpx.append(images[i])
count_x += 1
if len(tmpx) >= k:
tmp = tmpx[count_x - RAN:count_x]
random.shuffle(tmp)
tmpx[count_x - RAN:count_x] = tmp
if count_x == crop[0]:
tmpy.append(tmpx)
count_x = 0
count_y += 1
tmpx = []
if len(tmpy) >= k:
tmp2 = tmpy[count_y - RAN:count_y]
random.shuffle(tmp2)
tmpy[count_y - RAN:count_y] = tmp2
random_im = []
for line in tmpy:
random_im.extend(line)
# random.shuffle(images)
width, high = img.size
iw = int(width / crop[0])
ih = int(high / crop[1])
toImage = Image.new('RGB', (iw * crop[0], ih * crop[1]))
x = 0
y = 0
for i in random_im:
i = i.resize((iw, ih), Image.ANTIALIAS)
toImage.paste(i, (x * iw, y * ih))
x += 1
if x == crop[0]:
x = 0
y += 1
else:
toImage = img
toImage = toImage.resize((widthcut, highcut))
return toImage
def five_crop(img, size):
"""Crop the given PIL Image into four corners and the central crop.
.. Note::
This transform returns a tuple of images and there may be a
mismatch in the number of inputs and targets your ``Dataset`` returns.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
Returns:
tuple: tuple (tl, tr, bl, br, center) corresponding top left,
top right, bottom left, bottom right and center crop.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
w, h = img.size
crop_h, crop_w = size
if crop_w > w or crop_h > h:
raise ValueError("Requested crop size {} is bigger than input size {}".format(size,
(h, w)))
tl = img.crop((0, 0, crop_w, crop_h))
tr = img.crop((w - crop_w, 0, w, crop_h))
bl = img.crop((0, h - crop_h, crop_w, h))
br = img.crop((w - crop_w, h - crop_h, w, h))
center = center_crop(img, (crop_h, crop_w))
return (tl, tr, bl, br, center)
def ten_crop(img, size, vertical_flip=False):
"""Crop the given PIL Image into four corners and the central crop plus the
flipped version of these (horizontal flipping is used by default).
.. Note::
This transform returns a tuple of images and there may be a
mismatch in the number of inputs and targets your ``Dataset`` returns.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made.
vertical_flip (bool): Use vertical flipping instead of horizontal
Returns:
tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip,
br_flip, center_flip) corresponding top left, top right,
bottom left, bottom right and center crop and same for the
flipped image.
"""
if isinstance(size, numbers.Number):
size = (int(size), int(size))
else:
assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
first_five = five_crop(img, size)
if vertical_flip:
img = vflip(img)
else:
img = hflip(img)
second_five = five_crop(img, size)
return first_five + second_five
def adjust_brightness(img, brightness_factor):
"""Adjust brightness of an Image.
Args:
img (PIL Image): PIL Image to be adjusted.
brightness_factor (float): How much to adjust the brightness. Can be
any non negative number. 0 gives a black image, 1 gives the
original image while 2 increases the brightness by a factor of 2.
Returns:
PIL Image: Brightness adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Brightness(img)
img = enhancer.enhance(brightness_factor)
return img
def adjust_contrast(img, contrast_factor):
"""Adjust contrast of an Image.
Args:
img (PIL Image): PIL Image to be adjusted.
contrast_factor (float): How much to adjust the contrast. Can be any
non negative number. 0 gives a solid gray image, 1 gives the
original image while 2 increases the contrast by a factor of 2.
Returns:
PIL Image: Contrast adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(contrast_factor)
return img
def adjust_saturation(img, saturation_factor):
"""Adjust color saturation of an image.
Args:
img (PIL Image): PIL Image to be adjusted.
saturation_factor (float): How much to adjust the saturation. 0 will
give a black and white image, 1 will give the original image while
2 will enhance the saturation by a factor of 2.
Returns:
PIL Image: Saturation adjusted image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
enhancer = ImageEnhance.Color(img)
img = enhancer.enhance(saturation_factor)
return img
def adjust_hue(img, hue_factor):
"""Adjust hue of an image.
The image hue is adjusted by converting the image to HSV and
cyclically shifting the intensities in the hue channel (H).
The image is then converted back to original image mode.
`hue_factor` is the amount of shift in H channel and must be in the
interval `[-0.5, 0.5]`.
See https://en.wikipedia.org/wiki/Hue for more details on Hue.
Args:
img (PIL Image): PIL Image to be adjusted.
hue_factor (float): How much to shift the hue channel. Should be in
[-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
HSV space in positive and negative direction respectively.
0 means no shift. Therefore, both -0.5 and 0.5 will give an image
with complementary colors while 0 gives the original image.
Returns:
PIL Image: Hue adjusted image.
"""
if not(-0.5 <= hue_factor <= 0.5):
raise ValueError('hue_factor is not in [-0.5, 0.5].'.format(hue_factor))
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
input_mode = img.mode
if input_mode in {'L', '1', 'I', 'F'}:
return img
h, s, v = img.convert('HSV').split()
np_h = np.array(h, dtype=np.uint8)
# uint8 addition take cares of rotation across boundaries
with np.errstate(over='ignore'):
np_h += np.uint8(hue_factor * 255)
h = Image.fromarray(np_h, 'L')
img = Image.merge('HSV', (h, s, v)).convert(input_mode)
return img
def adjust_gamma(img, gamma, gain=1):
"""Perform gamma correction on an image.
Also known as Power Law Transform. Intensities in RGB mode are adjusted
based on the following equation:
I_out = 255 * gain * ((I_in / 255) ** gamma)
See https://en.wikipedia.org/wiki/Gamma_correction for more details.
Args:
img (PIL Image): PIL Image to be adjusted.
gamma (float): Non negative real number. gamma larger than 1 make the
shadows darker, while gamma smaller than 1 make dark regions
lighter.
gain (float): The constant multiplier.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if gamma < 0:
raise ValueError('Gamma should be a non-negative real number')
input_mode = img.mode
img = img.convert('RGB')
gamma_map = [255 * gain * pow(ele / 255., gamma) for ele in range(256)] * 3
img = img.point(gamma_map) # use PIL's point-function to accelerate this part
img = img.convert(input_mode)
return img
def rotate(img, angle, resample=False, expand=False, center=None):
"""Rotate the image by angle.
Args:
img (PIL Image): PIL Image to be rotated.
angle ({float, int}): In degrees degrees counter clockwise order.
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter.
See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
expand (bool, optional): Optional expansion flag.
If true, expands the output image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the input image.
Note that the expand flag assumes rotation around the center and no translation.
center (2-tuple, optional): Optional center of rotation.
Origin is the upper left corner.
Default is the center of the image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
return img.rotate(angle, resample, expand, center)
def _get_inverse_affine_matrix(center, angle, translate, scale, shear):
# Helper method to compute inverse matrix for affine transformation
# As it is explained in PIL.Image.rotate
# We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
# where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
# C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
# RSS is rotation with scale and shear matrix
# RSS(a, scale, shear) = [ cos(a)*scale -sin(a + shear)*scale 0]
# [ sin(a)*scale cos(a + shear)*scale 0]
# [ 0 0 1]
# Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1
angle = math.radians(angle)
shear = math.radians(shear)
scale = 1.0 / scale
# Inverted rotation matrix with scale and shear
d = math.cos(angle + shear) * math.cos(angle) + math.sin(angle + shear) * math.sin(angle)
matrix = [
math.cos(angle + shear), math.sin(angle + shear), 0,
-math.sin(angle), math.cos(angle), 0
]
matrix = [scale / d * m for m in matrix]
# Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
matrix[2] += matrix[0] * (-center[0] - translate[0]) + matrix[1] * (-center[1] - translate[1])
matrix[5] += matrix[3] * (-center[0] - translate[0]) + matrix[4] * (-center[1] - translate[1])
# Apply center translation: C * RSS^-1 * C^-1 * T^-1
matrix[2] += center[0]
matrix[5] += center[1]
return matrix
def affine(img, angle, translate, scale, shear, resample=0, fillcolor=None):
"""Apply affine transformation on the image keeping image center invariant
Args:
img (PIL Image): PIL Image to be rotated.
angle ({float, int}): rotation angle in degrees between -180 and 180, clockwise direction.
translate (list or tuple of integers): horizontal and vertical translations (post-rotation translation)
scale (float): overall scale
shear (float): shear angle value in degrees between -180 to 180, clockwise direction.
resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
An optional resampling filter.
See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
"Argument translate should be a list or tuple of length 2"
assert scale > 0.0, "Argument scale should be positive"
output_size = img.size
center = (img.size[0] * 0.5 + 0.5, img.size[1] * 0.5 + 0.5)
matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
kwargs = {"fillcolor": fillcolor} if PILLOW_VERSION[0] == '5' else {}
return img.transform(output_size, Image.AFFINE, matrix, resample, **kwargs)
def to_grayscale(img, num_output_channels=1):
"""Convert image to grayscale version of image.
Args:
img (PIL Image): Image to be converted to grayscale.
Returns:
PIL Image: Grayscale version of the image.
if num_output_channels == 1 : returned image is single channel
if num_output_channels == 3 : returned image is 3 channel with r == g == b
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if num_output_channels == 1:
img = img.convert('L')
elif num_output_channels == 3:
img = img.convert('L')
np_img = np.array(img, dtype=np.uint8)
np_img = np.dstack([np_img, np_img, np_img])
img = Image.fromarray(np_img, 'RGB')
else:
raise ValueError('num_output_channels should be either 1 or 3')
return img

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,127 @@
#coding=utf8
from __future__ import division
import torch
import os,time,datetime
from torch.autograd import Variable
import logging
import numpy as np
from math import ceil
from torch.nn import L1Loss
from torch import nn
def dt():
return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
def trainlog(logfilepath, head='%(message)s'):
logger = logging.getLogger('mylogger')
logging.basicConfig(filename=logfilepath, level=logging.INFO, format=head)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter(head)
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
def train(cfg,
model,
epoch_num,
start_epoch,
optimizer,
criterion,
exp_lr_scheduler,
data_set,
data_loader,
save_dir,
print_inter=200,
val_inter=3500
):
step = 0
add_loss = L1Loss()
for epoch in range(start_epoch,epoch_num-1):
# train phase
exp_lr_scheduler.step(epoch)
model.train(True) # Set model to training mode
for batch_cnt, data in enumerate(data_loader['train']):
step+=1
model.train(True)
inputs, labels, labels_swap, swap_law = data
inputs = Variable(inputs.cuda())
labels = Variable(torch.from_numpy(np.array(labels)).cuda())
labels_swap = Variable(torch.from_numpy(np.array(labels_swap)).cuda())
swap_law = Variable(torch.from_numpy(np.array(swap_law)).float().cuda())
# zero the parameter gradients
optimizer.zero_grad()
outputs = model(inputs)
if isinstance(outputs, list):
loss = criterion(outputs[0], labels)
loss += criterion(outputs[1], labels_swap)
loss.backward()
optimizer.step()
if step % val_inter == 0:
logging.info('current lr:%s' % exp_lr_scheduler.get_lr())
# val phase
model.train(False) # Set model to evaluate mode
val_loss = 0
val_corrects1 = 0
val_corrects2 = 0
val_corrects3 = 0
val_size = ceil(len(data_set['val']) / data_loader['val'].batch_size)
t0 = time.time()
for batch_cnt_val, data_val in enumerate(data_loader['val']):
# print data
inputs, labels, labels_swap, swap_law = data_val
inputs = Variable(inputs.cuda())
labels = Variable(torch.from_numpy(np.array(labels)).long().cuda())
labels_swap = Variable(torch.from_numpy(np.array(labels_swap)).long().cuda())
# forward
if len(inputs)==1:
inputs = torch.cat((inputs,inputs))
labels = torch.cat((labels,labels))
labels_swap = torch.cat((labels_swap,labels_swap))
outputs = model(inputs)
if isinstance(outputs, list):
outputs1 = outputs[0] + outputs[1][:,0:cfg['numcls']] + outputs[1][:,cfg['numcls']:2*cfg['numcls']]
outputs2 = outputs[0]
outputs3 = outputs[1][:,0:cfg['numcls']] + outputs[1][:,cfg['numcls']:2*cfg['numcls']]
_, preds1 = torch.max(outputs1, 1)
_, preds2 = torch.max(outputs2, 1)
_, preds3 = torch.max(outputs3, 1)
batch_corrects1 = torch.sum((preds1 == labels)).data.item()
val_corrects1 += batch_corrects1
batch_corrects2 = torch.sum((preds2 == labels)).data.item()
val_corrects2 += batch_corrects2
batch_corrects3 = torch.sum((preds3 == labels)).data.item()
val_corrects3 += batch_corrects3
# val_acc = 0.5 * val_corrects / len(data_set['val'])
val_acc1 = 0.5 * val_corrects1 / len(data_set['val'])
val_acc2 = 0.5 * val_corrects2 / len(data_set['val'])
val_acc3 = 0.5 * val_corrects3 / len(data_set['val'])
t1 = time.time()
since = t1-t0
logging.info('--'*30)
logging.info('current lr:%s' % exp_lr_scheduler.get_lr())
logging.info('%s epoch[%d]-val-loss: %.4f ||val-acc@1: c&a: %.4f c: %.4f a: %.4f||time: %d'
% (dt(), epoch, val_loss, val_acc1, val_acc2, val_acc3, since))
# save model
save_path = os.path.join(save_dir,
'weights-%d-%d-[%.4f].pth'%(epoch,batch_cnt,val_acc1))
torch.save(model.state_dict(), save_path)
logging.info('saved model to %s' % (save_path))
logging.info('--' * 30)