DCL/resnet_swap_2loss_add.py

43 lines
1.4 KiB
Python

from torch import nn
import torch
from torchvision import models, transforms, datasets
import torch.nn.functional as F
class resnet_swap_2loss_add(nn.Module):
def __init__(self, num_classes):
super(resnet_swap_2loss_add,self).__init__()
resnet50 = models.resnet50(pretrained=True)
self.stage1_img = nn.Sequential(*list(resnet50.children())[:5])
self.stage2_img = nn.Sequential(*list(resnet50.children())[5:6])
self.stage3_img = nn.Sequential(*list(resnet50.children())[6:7])
self.stage4_img = nn.Sequential(*list(resnet50.children())[7])
self.avgpool = nn.AdaptiveAvgPool2d(output_size=1)
self.classifier = nn.Linear(2048, num_classes)
self.classifier_swap = nn.Linear(2048, 2*num_classes)
# self.classifier_swap = nn.Linear(2048, 2)
self.Convmask = nn.Conv2d(2048, 1, 1, stride=1, padding=0, bias=False)
self.avgpool2 = nn.AvgPool2d(2,stride=2)
def forward(self, x):
x2 = self.stage1_img(x)
x3 = self.stage2_img(x2)
x4 = self.stage3_img(x3)
x5 = self.stage4_img(x4)
x = x5
mask = self.Convmask(x)
mask = self.avgpool2(mask)
mask = F.tanh(mask)
mask = mask.view(mask.size(0),-1)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
out = []
out.append(self.classifier(x))
out.append(self.classifier_swap(x))
out.append(mask)
return out