DINOv/train_net.py

660 lines
29 KiB
Python

# ------------------------------------------------------------------------
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# by Feng Li and Hao Zhang.
# --------------------------------------------------------
# Copyright (c) 2024 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Feng Li (fliay@connect.ust.hk)
# --------------------------------------------------------
"""
DINOv Training Script based on Semantic-SAM.
"""
try:
from shapely.errors import ShapelyDeprecationWarning
import warnings
warnings.filterwarnings('ignore', category=ShapelyDeprecationWarning)
except:
pass
import copy
import itertools
import logging
import os
import time
from typing import Any, Dict, List, Set
import torch
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg, CfgNode
from detectron2.data import MetadataCatalog
from detectron2.projects.deeplab import build_lr_scheduler
from detectron2.utils.logger import setup_logger
from detectron2.config import LazyConfig, instantiate
from utils.misc import init_wandb
import wandb
from datasets import (
build_train_dataloader,
build_evaluator,
build_eval_dataloader,
)
import random
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
hooks,
launch,
create_ddp_model,
AMPTrainer,
SimpleTrainer
)
import weakref
from dinov import build_model
from dinov.BaseModel import BaseModel
from utils.misc import hook_metadata, hook_switcher, hook_opt
from dinov.utils import get_class_names
from detectron2.utils.logger import log_every_n_seconds
import datetime
logger = logging.getLogger(__name__)
logging.basicConfig(level = logging.INFO)
class Trainer(DefaultTrainer):
"""
Extension of the Trainer class Ped to MaskFormer.
"""
def __init__(self, cfg):
super(DefaultTrainer, self).__init__()
logger = logging.getLogger("detectron2")
if not logger.isEnabledFor(logging.INFO): # setup_logger is not called for d2
setup_logger()
cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())
# Assume these objects must be constructed in this order.
model = self.build_model(cfg)
optimizer = self.build_optimizer(cfg, model)
data_loader = self.build_train_loader(cfg)
model = create_ddp_model(model, broadcast_buffers=False)
self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
model, data_loader, optimizer
)
self.scheduler = self.build_lr_scheduler(cfg, optimizer)
# add model EMA
kwargs = {
'trainer': weakref.proxy(self),
}
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg['OUTPUT_DIR'],
**kwargs,
)
self.start_iter = 0
self.max_iter = cfg['SOLVER']['MAX_ITER']
self.cfg = cfg
self.register_hooks(self.build_hooks())
self.checkpointer = DetectionCheckpointer(
# Assume you want to save checkpoints together with logs/statistics
model,
cfg['OUTPUT_DIR'],
**kwargs,
)
def build_hooks(self):
"""
Build a list of default hooks, including timing, evaluation,
checkpointing, lr scheduling, precise BN, writing events.
Returns:
list[HookBase]:
"""
cfg = copy.deepcopy(self.cfg)
cfg.DATALOADER.NUM_WORKERS = 0 # save some memory and time for PreciseBN
ret = [
hooks.IterationTimer(),
hooks.LRScheduler(),
None,
]
# Do PreciseBN before checkpointer, because it updates the model and need to
# be saved by checkpointer.
# This is not always the best: if checkpointing has a different frequency,
# some checkpoints may have more precise statistics than others.
if comm.is_main_process():
ret.append(hooks.PeriodicCheckpointer(self.checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD))
def test_and_save_results():
self._last_eval_results = self.test(self.cfg, self.model)
return self._last_eval_results
# Do evaluation after checkpointer, because then if it fails,
# we can use the saved checkpoint to debug.
ret.append(hooks.EvalHook(cfg.TEST.EVAL_PERIOD, test_and_save_results))
if comm.is_main_process():
# Here the default print/log frequency of each writer is used.
# run writers in the end, so that evaluation metrics are written
ret.append(hooks.PeriodicWriter(self.build_writers(), period=1))
return ret
@classmethod
def build_model(cls, cfg):
"""
Returns:
torch.nn.Module:
It now calls :func:`detectron2.modeling.build_model`.
Overwrite it if you'd like a different model.
"""
model = BaseModel(cfg, build_model(cfg)).cuda()
logger = logging.getLogger(__name__)
logger.info("Model:\n{}".format(model))
return model
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
return build_evaluator(cfg, dataset_name, output_folder=output_folder)
@classmethod
def build_train_loader(cls, cfg):
return build_train_dataloader(cfg, )
@classmethod
def build_test_loader(cls, cfg, dataset_name):
loader = build_eval_dataloader(cfg, )
return loader
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
"""
It now calls :func:`detectron2.solver.build_lr_scheduler`.
Overwrite it if you'd like a different scheduler.
"""
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
cfg_solver = cfg['SOLVER']
weight_decay_norm = cfg_solver['WEIGHT_DECAY_NORM']
weight_decay_embed = cfg_solver['WEIGHT_DECAY_EMBED']
weight_decay_bias = cfg_solver.get('WEIGHT_DECAY_BIAS', 0.0)
defaults = {}
defaults["lr"] = cfg_solver['BASE_LR']
defaults["weight_decay"] = cfg_solver['WEIGHT_DECAY']
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
lr_multiplier = cfg['SOLVER']['LR_MULTIPLIER']
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
for key, lr_mul in lr_multiplier.items():
if key in "{}.{}".format(module_name, module_param_name):
hyperparams["lr"] = hyperparams["lr"] * lr_mul
if comm.is_main_process():
logger.info("Modify Learning rate of {}: {}".format(
"{}.{}".format(module_name, module_param_name), lr_mul))
if (
"relative_position_bias_table" in module_param_name
or "absolute_pos_embed" in module_param_name
):
hyperparams["weight_decay"] = 0.0
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
if "bias" in module_name:
hyperparams["weight_decay"] = weight_decay_bias
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg_solver['CLIP_GRADIENTS']['CLIP_VALUE']
enable = (
cfg_solver['CLIP_GRADIENTS']['ENABLED']
and cfg_solver['CLIP_GRADIENTS']['CLIP_TYPE'] == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(*[x["params"] for x in self.param_groups])
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg_solver['OPTIMIZER']
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg_solver['BASE_LR'], momentum=cfg_solver['MOMENTUM']
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg_solver['BASE_LR']
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
return optimizer
@staticmethod
def auto_scale_workers(cfg, num_workers: int):
"""
Returns:
CfgNode: a new config. Same as original if ``cfg.SOLVER.REFERENCE_WORLD_SIZE==0``.
"""
old_world_size = cfg.SOLVER.REFERENCE_WORLD_SIZE
if old_world_size == 0 or old_world_size == num_workers:
return cfg
cfg = copy.deepcopy(cfg)
assert (
cfg.SOLVER.IMS_PER_BATCH % old_world_size == 0
), "Invalid REFERENCE_WORLD_SIZE in config!"
scale = num_workers / old_world_size
bs = cfg.SOLVER.IMS_PER_BATCH = int(round(cfg.SOLVER.IMS_PER_BATCH * scale))
lr = cfg.SOLVER.BASE_LR = cfg.SOLVER.BASE_LR * scale
max_iter = cfg.SOLVER.MAX_ITER = int(round(cfg.SOLVER.MAX_ITER / scale))
warmup_iter = cfg.SOLVER.WARMUP_ITERS = int(round(cfg.SOLVER.WARMUP_ITERS / scale))
cfg.SOLVER.STEPS = tuple(int(round(s / scale)) for s in cfg.SOLVER.STEPS)
cfg.TEST.EVAL_PERIOD = int(round(cfg.TEST.EVAL_PERIOD / scale))
cfg.SOLVER.CHECKPOINT_PERIOD = int(round(cfg.SOLVER.CHECKPOINT_PERIOD / scale))
cfg.SOLVER.REFERENCE_WORLD_SIZE = num_workers # maintain invariant
logger = logging.getLogger(__name__)
logger.info(
f"Auto-scaling the config to batch_size={bs}, learning_rate={lr}, "
f"max_iter={max_iter}, warmup={warmup_iter}."
)
return cfg
@classmethod
def test_tracking_prev(cls, cfg, model, evaluators=None):
import numpy as np
from torch.nn import functional as F
from PIL import Image
from queue import Queue, LifoQueue, PriorityQueue
cfg['DATASETS']['TEST'] = ['davis17_val']
maxsize = cfg['MODEL']['DECODER']['MAX_MEMORY_SIZE']
dataloaders = cls.build_test_loader(cfg, dataset_name=None)
model = model.eval().cuda()
output_root = cfg['OUTPUT_DIR']
save_score = cfg['MODEL'].get('save_score', False)
preix = cfg['MODEL']['WEIGHTS'].split('/')[-1]
output_pth = os.path.join(output_root, preix + '_Predictions2017')
with torch.no_grad() and torch.autocast(device_type='cuda', dtype=torch.float16):
for dataloader in dataloaders:
for idx, video in enumerate(dataloader):
print(idx, len(dataloader), video[0].vid_name)
assert len(video) == 1
# find the first video frame that contains 'instances'
cur_idx = 0
for i in range(len(video[0])):
if 'instances' in video[0][i]:
cur_idx = i
break
rand_shape = video[0][cur_idx]['instances'].gt_masks.tensor[:, None] & False
acc_key = video[0][0]['key_frame'] & False
end_key = video[0][0]['key_frame'] & False
frame = video[0][0]
frame['targets'] = [dict()]
memory_content_label = [PriorityQueue(maxsize=maxsize) for i in range(len(rand_shape))]
ious = None
for fid, frame2 in enumerate(video[0]):
if frame2['key_frame'].sum() > 0:
# a list of True/False for all instance. only the first one's key frame are True
rand_shape[frame2['key_frame']] = frame2['instances'].gt_masks.tensor[:, None][
frame2['key_frame']] # ReTrack when the object disapper in some frames
rand_shape = rand_shape.squeeze(1)
print("fid, video[0].vid_name ", fid, video[0].vid_name, frame2['key_frame'])
frame['targets'][0]['rand_shape'] = rand_shape
frame2['targets'] = frame['targets']
batched_inputs = [frame]
batched_inputs2 = [frame2]
multi_scale_features2, mask_features2, _, _ = model.model.get_encoder_feature(batched_inputs2)
if fid==0 or ious[i]>-1.0: # only put these with large confidence score
multi_scale_features, _, padded_h, padded_w = model.model.get_encoder_feature(batched_inputs)
input_query_label_content, input_query_bbox_content, attn_mask_content = model.model. \
get_visual_prompt_content_feature(multi_scale_features, rand_shape, padded_h, padded_w)
# focus on the most recent frame; record with a score
score = fid if fid else 10000 # always keep the reference first frame
if input_query_label_content.shape[1]>len(memory_content_label):
input_query_label_content = input_query_label_content.view(input_query_label_content.shape[0], len(memory_content_label), -1, input_query_label_content.shape[-1])
for i, query in enumerate(input_query_label_content.squeeze(0)):
if memory_content_label[i].full() and len(memory_content_label[i].queue)==1:
continue
if memory_content_label[i].full():
a = memory_content_label[i].get()
memory_content_label[i].put((score, query.detach().clone()))
# frame = frame2
torch.cuda.empty_cache()
frame = frame2
# record the current instance
input_query_label_content_current = []
for instance_memory_content in memory_content_label:
instance_memory_content_current = torch.zeros_like(instance_memory_content.queue[0][-1]).to(instance_memory_content.queue[0][-1])
for q in range(len(instance_memory_content.queue)):
# combine with memory
instance_memory_content_current = instance_memory_content_current + instance_memory_content.queue[q][-1].detach().clone()
instance_memory_content_current = instance_memory_content_current/len(instance_memory_content.queue)
input_query_label_content_current.append(instance_memory_content_current)
input_query_label_content_current = torch.stack(input_query_label_content_current)[None]
if len(input_query_label_content_current.shape)>3:
input_query_label_content_current = input_query_label_content_current.flatten(1,2)
masks, ious, ori_masks = model.model.evaluate_visual_prompt_refer_multi_with_content_features(
batched_inputs2, mask_features2, multi_scale_features2, input_query_label_content_current,
input_query_bbox_content, attn_mask_content, padded_h, padded_w)
acc_key = acc_key | frame['key_frame']
if fid: # use ground thruth first frame mask for the second frame
rand_shape = ori_masks > 0.0
if fid == 0: # use the given first frame as gt
height = batched_inputs[0].get('height', -1)
width = batched_inputs[0].get('width', -1)
masks = F.interpolate(
rand_shape[None].float(),
size=(height, width),
mode="bilinear",
align_corners=False,
)[0]
output_mask = (
(masks>0).cpu() & acc_key[:, None, None] & (~end_key[:, None, None])).numpy()
output_mask_numpy = np.zeros(output_mask.shape[1:])
for i in range(output_mask.shape[0]):
output_mask_numpy[output_mask[i]] = video[0].mappers[i]
output_image = Image.fromarray(output_mask_numpy).convert('P')
output_image.putpalette(video[0].palette)
output_folder = os.path.join(output_pth, video[0].vid_name)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
if not save_score:
output_image.save(os.path.join(output_folder, "{}.png".format(frame['frame_id'])))
else:
output_image.save(os.path.join(output_folder, "{}_{}.png".format(frame['frame_id'], str(ious.cpu().detach().numpy()))))
end_key = end_key | frame['end_frame']
@classmethod
def test_save_features(cls, cfg, model, evaluators=None):
# build dataloader
dataloaders = cls.build_test_loader(cfg, dataset_name=None)
dataset_names = cfg['DATASETS']['TEST']
weight_path = cfg['MODEL']['WEIGHTS']
ckpt = weight_path.split('/')
# output_dir_ = cfg['OUTPUT_DIR']+'_'+ckpt[-1]
output_dir_ = cfg['OUTPUT_DIR']
if comm.is_main_process() and not os.path.exists(output_dir_):
os.mkdir(output_dir_)
model = model.eval().cuda()
model_without_ddp = model
if not type(model) == BaseModel:
model_without_ddp = model.module
for dataloader, dataset_name in zip(dataloaders, dataset_names):
print("begin inference ", dataset_name)
if 'seginw' in dataset_name:
dir_name = dataset_name.split('_')[1]
else:
dir_name = dataset_name.replace('train', 'val')
output_dir = os.path.join(output_dir_, dir_name)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
with torch.no_grad():
# setup model
hook_switcher(model_without_ddp, dataset_name)
# setup timer
total = len(dataloader)
num_warmup = min(5, total - 1)
total_data_time = 0
start_data_time = time.perf_counter()
for idx, batch in enumerate(dataloader):
if batch[0]['instances'].gt_boxes.tensor.shape[0]<1:
continue
total_data_time += time.perf_counter() - start_data_time
if idx == num_warmup:
total_data_time = 0
# forward
with torch.autocast(device_type='cuda', dtype=torch.float16):
task = 'get_content'
input_tokens_all, labels = model(batch, inference_task=task, dataset_name=dataset_name)
image_id = batch[0]['image_id']
from safetensors.torch import save_file
label_dict = {l: 0 for l in list(set(labels.cpu().numpy()))}
labels =labels.cpu().numpy()
for label, embedding in zip(labels, input_tokens_all):
label_dict[label] += 1
save_dict = {}
save_dict['embedding'] = embedding
save_cate_folder = os.path.join(output_dir, str(label))
save_path = os.path.join(save_cate_folder, 'id_{}_idx_{}.safetensors'.format(image_id, label_dict[label]))
if not os.path.exists(save_cate_folder):
os.system(f'mkdir -p {save_cate_folder}')
save_file(save_dict, save_path)
print(idx)
@classmethod
def test_visual_openset(cls, cfg, model, evaluators=None):
# build dataloade
dataloaders = cls.build_test_loader(cfg, dataset_name=None)
dataset_names = cfg['DATASETS']['TEST']
model = model.eval().cuda()
model_without_ddp = model
if not type(model) == BaseModel:
model_without_ddp = model.module
# score list
score_mask_ap = {}
score_box_ap = {}
output_dir_ = cfg['OUTPUT_DIR']
for dataloader, dataset_name in zip(dataloaders, dataset_names):
print("begin evaluate ", dataset_name)
# prepare for seginw
if 'seginw' in dataset_name:
dir_name = dataset_name.split('_')[1]
else:
dir_name = dataset_name.replace('train', 'val')
# output_dir = output_dir_
output_dir = os.path.join(output_dir_, dir_name)
model_without_ddp.model.sem_seg_head.predictor.out_dir = output_dir
# build evaluator
evaluator = build_evaluator(cfg, dataset_name, cfg['OUTPUT_DIR'])
evaluator.reset()
with torch.no_grad():
# setup model
if 'odinw' in dataset_name:
names = MetadataCatalog.get(dataset_name).thing_classes
else:
names = get_class_names(dataset_name, cfg['MODEL'].get('BACKGROUND', True))
model_without_ddp.model.metadata = MetadataCatalog.get(dataset_name)
if 'background' in names:
model_without_ddp.model.sem_seg_head.num_classes = len(names) - 1
else:
model_without_ddp.model.sem_seg_head.num_classes = len(names)
# HACK for inference random select query
cat_dirs = os.listdir(output_dir)
cat_dirs = [int(cat) for cat in cat_dirs if os.path.isdir(os.path.join(output_dir, cat))]
cat_dirs.sort()
model_without_ddp.model.metadata.set(cat_dirs=cat_dirs)
task = 'visual_openset'
hook_switcher(model_without_ddp, dataset_name)
# setup timer
total = len(dataloader)
num_warmup = min(5, total - 1)
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_data_time = time.perf_counter()
for idx, batch in enumerate(dataloader):
total_data_time += time.perf_counter() - start_data_time
if idx == num_warmup:
start_time = time.perf_counter()
total_data_time = 0
total_compute_time = 0
total_eval_time = 0
start_compute_time = time.perf_counter()
# forward
with torch.autocast(device_type='cuda', dtype=torch.float16):
# FIXME hack for visual prompt
# task = 'inference_select'
outputs = model(batch, inference_task=task, dataset_name=dataset_name)
total_compute_time += time.perf_counter() - start_compute_time
start_eval_time = time.perf_counter()
evaluator.process(batch, outputs)
total_eval_time += time.perf_counter() - start_eval_time
iters_after_start = idx + 1 - num_warmup * int(idx >= num_warmup)
data_seconds_per_iter = total_data_time / iters_after_start
compute_seconds_per_iter = total_compute_time / iters_after_start
eval_seconds_per_iter = total_eval_time / iters_after_start
total_seconds_per_iter = (time.perf_counter() - start_time) / iters_after_start
if comm.is_main_process() and (idx >= num_warmup * 2 or compute_seconds_per_iter > 5):
eta = datetime.timedelta(seconds=int(total_seconds_per_iter * (total - idx - 1)))
log_every_n_seconds(
logging.INFO,
(
f"Inference done {idx + 1}/{total}. "
f"Dataloading: {data_seconds_per_iter:.4f} s/iter. "
f"Inference: {compute_seconds_per_iter:.4f} s/iter. "
f"Eval: {eval_seconds_per_iter:.4f} s/iter. "
f"Total: {total_seconds_per_iter:.4f} s/iter. "
f"ETA={eta}"
),
n=5,
)
start_data_time = time.perf_counter()
# evaluate
print("gather results for ", dataset_name)
results = evaluator.evaluate()
print("dataset_name, results ", dataset_name, results)
if comm.is_main_process():
if 'seginw' in dataset_name or 'odinw' in dataset_name:
if 'seginw' in dataset_name:
score_mask_ap[dataset_name.split('_')[1]] = results['segm']['AP']
# score_box_ap[dataset_name.split('_')[1]] = results['bbox']['AP']
score_box_ap[dataset_name] = results['bbox']['AP']
print("score_mask_ap ", score_mask_ap)
print("score_box_ap ", score_box_ap)
lent = len(list(score_box_ap.values()))
if 'seginw' in dataset_name:
print("score_mask_ap ", sum(list(score_mask_ap.values()))/lent)
print("score_box_ap ", sum(list(score_box_ap.values()))/lent)
model = model.train().cuda()
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
default_setup(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="maskdino")
return cfg
def main(args=None):
cfg = setup(args)
print("Command cfg:", cfg)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
if args.eval_visual_openset:
res = Trainer.test_visual_openset(cfg, model)
elif args.eval_track_prev:
res = Trainer.test_tracking_prev(cfg, model)
elif args.eval_get_content_features:
res = Trainer.test_save_features(cfg, model)
else:
res = Trainer.test(cfg, model)
return res
if comm.get_rank() == 0 and args.WANDB:
wandb.login(key=args.wandb_key)
init_wandb(cfg, cfg['OUTPUT_DIR'], entity=args.wandb_usr_name, job_name=cfg['OUTPUT_DIR'])
trainer = Trainer(cfg)
print("load pretrained model weight!!!!!!")
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument('--eval_only', action='store_true')
parser.add_argument('--eval_visual_openset', action='store_true')
parser.add_argument('--eval_track_prev', action='store_true')
parser.add_argument('--eval_get_content_features', action='store_true')
parser.add_argument('--WANDB', action='store_true')
parser.add_argument('--wandb_usr_name', type=str, default='')
parser.add_argument('--wandb_key', type=str, default='')
args = parser.parse_args()
port = random.randint(1000, 20000)
args.dist_url = 'tcp://127.0.0.1:' + str(port)
print("Command Line Args:", args)
print("pwd:", os.getcwd())
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)