mirror of https://github.com/UX-Decoder/DINOv.git
169 lines
6.5 KiB
Python
169 lines
6.5 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# Modified by Bowen Cheng from https://github.com/facebookresearch/detr/blob/master/d2/detr/dataset_mapper.py
|
|
import copy
|
|
import os
|
|
|
|
import cv2
|
|
import scipy.io
|
|
import numpy as np
|
|
from scipy.io import loadmat
|
|
from PIL import Image
|
|
|
|
import torch
|
|
from torchvision import transforms
|
|
from torch.utils.data.dataset import Dataset
|
|
from detectron2.structures import BitMasks, Boxes, Instances
|
|
|
|
from ..shapes import build_shape_sampler
|
|
from detectron2.config import configurable
|
|
|
|
__all__ = ["YTVOSDatasetMapper"]
|
|
|
|
|
|
class VideoReader(object):
|
|
"""
|
|
This class is used to read a video, one frame at a time
|
|
"""
|
|
def __init__(self, image_dir, mask_dir, objects, min_size=None, max_size=None):
|
|
"""
|
|
image_dir - points to a directory of jpg images
|
|
mask_dir - points to a directory of png masks
|
|
size - resize min. side to size. Does nothing if <0.
|
|
to_save - optionally contains a list of file names without extensions
|
|
where the segmentation mask is required
|
|
use_all_mask - when true, read all available mask in mask_dir.
|
|
Default false. Set to true for YouTubeVOS validation.
|
|
"""
|
|
self.image_dir = image_dir
|
|
self.mask_dir = mask_dir
|
|
self.use_all_mask = True
|
|
self.vid_name = os.path.basename(image_dir)
|
|
|
|
self.frames = sorted(os.listdir(self.image_dir))
|
|
self.palette = Image.open(os.path.join(mask_dir, sorted(os.listdir(mask_dir))[0])).getpalette()
|
|
self.first_gt_path = os.path.join(self.mask_dir, sorted(os.listdir(self.mask_dir))[0])
|
|
|
|
self.object_ids = [int(x) for x in list(objects.keys())]
|
|
self.object_id_to_start_frame = {key: os.path.join(mask_dir, "{}.png".format(objects[key]['frames'][0])) for key in objects.keys()}
|
|
self.object_id_to_end_frame = {key: os.path.join(mask_dir, "{}.png".format(objects[key]['frames'][-1])) for key in objects.keys()}
|
|
self.start_frames = self.object_id_to_start_frame.values()
|
|
self.end_frames = self.object_id_to_end_frame.values()
|
|
self.mappers = {idx:int(x) for idx,x in enumerate(self.object_ids)}
|
|
|
|
t = []
|
|
t.append(transforms.Resize(min_size, interpolation=Image.BICUBIC, max_size=max_size))
|
|
self.transform = transforms.Compose(t)
|
|
|
|
def __getitem__(self, idx):
|
|
dataset_dict = {}
|
|
frame = self.frames[idx]
|
|
|
|
im_path = os.path.join(self.image_dir, frame)
|
|
image = Image.open(im_path).convert('RGB')
|
|
dataset_dict['width'] = image.size[0]
|
|
dataset_dict['height'] = image.size[1]
|
|
image = self.transform(image)
|
|
image = torch.from_numpy(np.asarray(image).copy())
|
|
image = image.permute(2,0,1)
|
|
|
|
gt_path = os.path.join(self.mask_dir, '{}.png'.format(frame[:-4]))
|
|
|
|
key_frames = torch.zeros(len(self.object_ids)).bool()
|
|
end_frames = torch.zeros(len(self.object_ids)).bool()
|
|
if os.path.exists(gt_path):
|
|
mask = Image.open(gt_path).convert('P')
|
|
mask = np.array(mask, dtype=np.uint8)
|
|
|
|
object_masks = []
|
|
for idx in self.object_ids:
|
|
object_masks += [mask==idx]
|
|
|
|
instances = Instances(image.shape[-2:])
|
|
_,h,w = image.shape
|
|
# sbd dataset only has one gt mask.
|
|
masks = [cv2.resize(object_mask.astype(np.uint8), (w,h), interpolation=cv2.INTER_CUBIC) for object_mask in object_masks]
|
|
masks = BitMasks(
|
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks])
|
|
)
|
|
instances.gt_masks = masks
|
|
instances.gt_boxes = masks.get_bounding_boxes()
|
|
|
|
dataset_dict['instances'] = instances
|
|
dataset_dict['gt_masks_orisize'] = torch.stack([torch.from_numpy(object_mask) for object_mask in object_masks])
|
|
|
|
if gt_path in self.start_frames:
|
|
for index, obj_id in enumerate(self.object_ids):
|
|
if gt_path == self.object_id_to_start_frame[str(obj_id)]:
|
|
key_frames[index] = True
|
|
|
|
if gt_path in self.end_frames:
|
|
for index, obj_id in enumerate(self.object_ids):
|
|
if gt_path == self.object_id_to_end_frame[str(obj_id)]:
|
|
end_frames[index] = True
|
|
|
|
|
|
dataset_dict['image'] = image
|
|
dataset_dict['key_frame'] = key_frames
|
|
dataset_dict['frame_id'] = frame.split('/')[-1].split('.')[0]
|
|
dataset_dict['end_frame'] = end_frames
|
|
return dataset_dict
|
|
|
|
def __len__(self):
|
|
return len(self.frames)
|
|
|
|
# This is specifically designed for the COCO dataset.
|
|
class YTVOSDatasetMapper:
|
|
"""
|
|
A callable which takes a dataset dict in Detectron2 Dataset format,
|
|
and map it into a format used by MaskFormer.
|
|
|
|
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation.
|
|
|
|
The callable currently does the following:
|
|
|
|
1. Read the image from "file_name"
|
|
2. Applies geometric transforms to the image and annotation
|
|
3. Find and applies suitable cropping to the image and annotation
|
|
4. Prepare image and annotation to Tensors
|
|
"""
|
|
|
|
@configurable
|
|
def __init__(
|
|
self,
|
|
is_train=True,
|
|
dataset_name='',
|
|
min_size_test=None,
|
|
max_size_test=None,
|
|
):
|
|
"""
|
|
NOTE: this interface is experimental.
|
|
Args:
|
|
is_train: for training or inference
|
|
augmentations: a list of augmentations or deterministic transforms to apply
|
|
tfm_gens: data augmentation
|
|
image_format: an image format supported by :func:`detection_utils.read_image`.
|
|
"""
|
|
self.is_train = is_train
|
|
self.dataset_name = dataset_name
|
|
self.min_size_test = min_size_test
|
|
self.max_size_test = max_size_test
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, is_train=True, dataset_name=''):
|
|
ret = {
|
|
"is_train": is_train,
|
|
"dataset_name": dataset_name,
|
|
"min_size_test": cfg['INPUT']['MIN_SIZE_TEST'],
|
|
"max_size_test": cfg['INPUT']['MAX_SIZE_TEST'],
|
|
}
|
|
return ret
|
|
|
|
def __call__(self, dataset_dict):
|
|
"""
|
|
Args:
|
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
|
|
|
|
Returns:
|
|
dict: a format that builtin models in detectron2 accept
|
|
"""
|
|
return VideoReader(dataset_dict['file_name'], dataset_dict['mask_name'], dataset_dict['objects'], min_size=self.min_size_test, max_size=self.max_size_test) |