2022-04-02 20:01:06 +08:00
|
|
|
# Copyright (c) Alibaba, Inc. and its affiliates.
|
|
|
|
"""
|
|
|
|
Mostly copy-paste from timm library.
|
|
|
|
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
|
|
|
|
|
|
|
|
dynamic Input support borrow from
|
|
|
|
https://github.com/microsoft/esvit/blob/main/models/vision_transformer.py
|
|
|
|
|
|
|
|
"""
|
|
|
|
import math
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
# from utils import trunc_normal_
|
|
|
|
from timm.models.layers import trunc_normal_
|
|
|
|
|
2022-04-22 15:22:43 +08:00
|
|
|
from easycv.utils.checkpoint import load_checkpoint
|
|
|
|
from easycv.utils.logger import get_root_logger
|
2022-04-02 20:01:06 +08:00
|
|
|
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
|
|
|
if drop_prob == 0. or not training:
|
|
|
|
return x
|
|
|
|
keep_prob = 1 - drop_prob
|
|
|
|
shape = (x.shape[0], ) + (1, ) * (
|
|
|
|
x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
|
|
|
random_tensor = keep_prob + torch.rand(
|
|
|
|
shape, dtype=x.dtype, device=x.device)
|
|
|
|
random_tensor.floor_() # binarize
|
|
|
|
output = x.div(keep_prob) * random_tensor
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class DropPath(nn.Module):
|
|
|
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, drop_prob=None):
|
|
|
|
super(DropPath, self).__init__()
|
|
|
|
self.drop_prob = drop_prob
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return drop_path(x, self.drop_prob, self.training)
|
|
|
|
|
|
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
in_features,
|
|
|
|
hidden_features=None,
|
|
|
|
out_features=None,
|
|
|
|
act_layer=nn.GELU,
|
|
|
|
drop=0.):
|
|
|
|
super().__init__()
|
|
|
|
out_features = out_features or in_features
|
|
|
|
hidden_features = hidden_features or in_features
|
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features)
|
|
|
|
self.act = act_layer()
|
|
|
|
self.fc2 = nn.Linear(hidden_features, out_features)
|
|
|
|
self.drop = nn.Dropout(drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.act(x)
|
|
|
|
x = self.drop(x)
|
|
|
|
x = self.fc2(x)
|
|
|
|
x = self.drop(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
dim,
|
|
|
|
num_heads=8,
|
|
|
|
qkv_bias=False,
|
|
|
|
qk_scale=None,
|
|
|
|
attn_drop=0.,
|
|
|
|
proj_drop=0.):
|
|
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
head_dim = dim // num_heads
|
|
|
|
self.scale = qk_scale or head_dim**-0.5
|
|
|
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, N, C = x.shape
|
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
|
|
|
|
C // self.num_heads).permute(2, 0, 3, 1, 4)
|
|
|
|
q, k, v = qkv[0], qkv[1], qkv[2]
|
|
|
|
|
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.scale
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
|
|
attn = self.attn_drop(attn)
|
|
|
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
|
|
|
x = self.proj(x)
|
|
|
|
x = self.proj_drop(x)
|
|
|
|
return x, attn
|
|
|
|
|
|
|
|
|
|
|
|
class Block(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
dim,
|
|
|
|
num_heads,
|
|
|
|
mlp_ratio=4.,
|
|
|
|
qkv_bias=False,
|
|
|
|
qk_scale=None,
|
|
|
|
drop=0.,
|
|
|
|
attn_drop=0.,
|
|
|
|
drop_path=0.,
|
|
|
|
act_layer=nn.GELU,
|
|
|
|
norm_layer=nn.LayerNorm):
|
|
|
|
super().__init__()
|
|
|
|
self.norm1 = norm_layer(dim)
|
|
|
|
self.attn = Attention(
|
|
|
|
dim,
|
|
|
|
num_heads=num_heads,
|
|
|
|
qkv_bias=qkv_bias,
|
|
|
|
qk_scale=qk_scale,
|
|
|
|
attn_drop=attn_drop,
|
|
|
|
proj_drop=drop)
|
|
|
|
self.drop_path = DropPath(
|
|
|
|
drop_path) if drop_path > 0. else nn.Identity()
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
|
|
mlp_hidden_dim = int(dim * mlp_ratio)
|
|
|
|
self.mlp = Mlp(
|
|
|
|
in_features=dim,
|
|
|
|
hidden_features=mlp_hidden_dim,
|
|
|
|
act_layer=act_layer,
|
|
|
|
drop=drop)
|
|
|
|
|
|
|
|
def forward(self, x, return_attention=False):
|
|
|
|
y, attn = self.attn(self.norm1(x))
|
|
|
|
if return_attention:
|
|
|
|
return attn
|
|
|
|
x = x + self.drop_path(y)
|
|
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward_fea_and_attn(self, x):
|
|
|
|
y, attn = self.attn(self.norm1(x))
|
|
|
|
x = x + self.drop_path(y)
|
|
|
|
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
|
|
|
return x, attn
|
|
|
|
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
|
|
""" Image to Patch Embedding
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
|
|
|
super().__init__()
|
|
|
|
num_patches = (img_size // patch_size) * (img_size // patch_size)
|
|
|
|
self.img_size = img_size
|
|
|
|
self.patch_size = patch_size
|
|
|
|
self.num_patches = num_patches
|
|
|
|
|
|
|
|
self.proj = nn.Conv2d(
|
|
|
|
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
B, C, H, W = x.shape
|
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2)
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
|
|
""" Vision Transformer """
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
img_size=[224],
|
|
|
|
patch_size=16,
|
|
|
|
in_chans=3,
|
|
|
|
num_classes=0,
|
|
|
|
embed_dim=768,
|
|
|
|
depth=12,
|
|
|
|
num_heads=12,
|
|
|
|
mlp_ratio=4.,
|
|
|
|
qkv_bias=False,
|
|
|
|
qk_scale=None,
|
|
|
|
drop_rate=0.,
|
|
|
|
attn_drop_rate=0.,
|
|
|
|
drop_path_rate=0.,
|
|
|
|
norm_layer=nn.LayerNorm,
|
|
|
|
use_dense_prediction=False,
|
|
|
|
global_pool=False,
|
|
|
|
**kwargs):
|
|
|
|
super().__init__()
|
|
|
|
self.num_features = self.embed_dim = embed_dim
|
|
|
|
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
|
|
img_size=img_size[0],
|
|
|
|
patch_size=patch_size,
|
|
|
|
in_chans=in_chans,
|
|
|
|
embed_dim=embed_dim)
|
|
|
|
num_patches = self.patch_embed.num_patches
|
|
|
|
|
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
|
|
|
self.pos_embed = nn.Parameter(
|
|
|
|
torch.zeros(1, num_patches + 1, embed_dim))
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate)
|
|
|
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
|
|
|
] # stochastic depth decay rule
|
|
|
|
self.blocks = nn.ModuleList([
|
|
|
|
Block(
|
|
|
|
dim=embed_dim,
|
|
|
|
num_heads=num_heads,
|
|
|
|
mlp_ratio=mlp_ratio,
|
|
|
|
qkv_bias=qkv_bias,
|
|
|
|
qk_scale=qk_scale,
|
|
|
|
drop=drop_rate,
|
|
|
|
attn_drop=attn_drop_rate,
|
|
|
|
drop_path=dpr[i],
|
|
|
|
norm_layer=norm_layer) for i in range(depth)
|
|
|
|
])
|
|
|
|
self.norm = norm_layer(embed_dim)
|
|
|
|
|
|
|
|
# Classifier head
|
|
|
|
self.head = nn.Linear(
|
|
|
|
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
|
|
|
|
|
|
|
# Dense prediction head
|
|
|
|
self.use_dense_prediction = use_dense_prediction
|
|
|
|
if self.use_dense_prediction:
|
|
|
|
self.head_dense = None
|
|
|
|
|
|
|
|
|
|
|
|
# Use global average pooling
|
|
|
|
self.global_pool = global_pool
|
|
|
|
if self.global_pool:
|
|
|
|
self.fc_norm = norm_layer(embed_dim)
|
|
|
|
self.norm = None
|
|
|
|
|
|
|
|
trunc_normal_(self.pos_embed, std=.02)
|
|
|
|
trunc_normal_(self.cls_token, std=.02)
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
|
|
|
|
def _init_weights(self, m):
|
|
|
|
if isinstance(m, nn.Linear):
|
|
|
|
trunc_normal_(m.weight, std=.02)
|
|
|
|
if isinstance(m, nn.Linear) and m.bias is not None:
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
elif isinstance(m, nn.LayerNorm):
|
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
|
|
|
|
|
def init_weights(self, pretrained=None):
|
|
|
|
if isinstance(pretrained, str) or isinstance(pretrained, dict):
|
|
|
|
logger = get_root_logger()
|
|
|
|
load_checkpoint(
|
|
|
|
self,
|
|
|
|
pretrained,
|
|
|
|
map_location='cpu',
|
|
|
|
strict=False,
|
|
|
|
logger=logger)
|
|
|
|
elif pretrained is None:
|
|
|
|
self.apply(self._init_weights)
|
|
|
|
else:
|
|
|
|
raise TypeError('pretrained must be a str or None')
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
# convert to list
|
|
|
|
if not isinstance(x, list):
|
|
|
|
x = [x]
|
|
|
|
# Perform forward pass separately on each resolution input.
|
|
|
|
# The inputs corresponding to a single resolution are clubbed and single
|
|
|
|
# forward is run on the same resolution inputs. Hence we do several
|
|
|
|
# forward passes = number of different resolutions used. We then
|
|
|
|
# concatenate all the output features.
|
|
|
|
idx_crops = torch.cumsum(
|
|
|
|
torch.unique_consecutive(
|
|
|
|
torch.tensor([inp.shape[-1] for inp in x]),
|
|
|
|
return_counts=True,
|
|
|
|
)[1], 0)
|
|
|
|
|
|
|
|
if self.use_dense_prediction:
|
|
|
|
start_idx = 0
|
|
|
|
|
|
|
|
for end_idx in idx_crops:
|
|
|
|
_out_cls, _out_fea = self.forward_features(
|
|
|
|
torch.cat(x[start_idx:end_idx]))
|
|
|
|
B, N, C = _out_fea.shape
|
|
|
|
|
|
|
|
if start_idx == 0:
|
|
|
|
output_cls = _out_cls
|
|
|
|
output_fea = _out_fea.reshape(B * N, C)
|
|
|
|
npatch = [N]
|
|
|
|
else:
|
|
|
|
output_cls = torch.cat((output_cls, _out_cls))
|
|
|
|
output_fea = torch.cat(
|
|
|
|
(output_fea, _out_fea.reshape(B * N, C)))
|
|
|
|
npatch.append(N)
|
|
|
|
start_idx = end_idx
|
|
|
|
|
|
|
|
return [
|
|
|
|
self.head(output_cls),
|
|
|
|
self.head_dense(output_fea), output_fea, npatch
|
|
|
|
]
|
|
|
|
|
|
|
|
else:
|
|
|
|
start_idx = 0
|
|
|
|
for end_idx in idx_crops:
|
|
|
|
_out = self.forward_features(torch.cat(x[start_idx:end_idx]))
|
|
|
|
# _out = self.forward_return_n_last_blocks(torch.cat(x[start_idx: end_idx]), 4, True)
|
|
|
|
if start_idx == 0:
|
|
|
|
output = _out
|
|
|
|
else:
|
|
|
|
output = torch.cat((output, _out))
|
|
|
|
start_idx = end_idx
|
|
|
|
|
|
|
|
# print(f'output[0] {output[0].shape}')
|
|
|
|
# Run the head forward on the concatenated features.
|
|
|
|
return [self.head(output)]
|
|
|
|
|
|
|
|
def forward_features(self, x):
|
|
|
|
B = x.shape[0]
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
|
|
|
|
x = x + pos_embed
|
|
|
|
x = self.pos_drop(x)
|
|
|
|
|
|
|
|
for blk in self.blocks:
|
|
|
|
x = blk(x)
|
|
|
|
if self.norm is not None:
|
|
|
|
x = self.norm(x)
|
|
|
|
|
|
|
|
if self.use_dense_prediction:
|
|
|
|
return x[:, 0], x[:, 1:]
|
|
|
|
else:
|
|
|
|
if self.global_pool:
|
|
|
|
x = x[:, 1:, :].mean(dim=1)
|
|
|
|
return self.fc_norm(x)
|
|
|
|
else:
|
|
|
|
return x[:, 0]
|
|
|
|
|
|
|
|
def forward_feature_maps(self, x):
|
|
|
|
B = x.shape[0]
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
|
|
|
|
x = x + pos_embed
|
|
|
|
x = self.pos_drop(x)
|
|
|
|
|
|
|
|
for blk in self.blocks:
|
|
|
|
x = blk(x)
|
|
|
|
if self.norm is not None:
|
|
|
|
x = self.norm(x)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
def interpolate_pos_encoding(self, x, pos_embed):
|
|
|
|
npatch = x.shape[1] - 1
|
|
|
|
N = pos_embed.shape[1] - 1
|
|
|
|
if npatch == N:
|
|
|
|
return pos_embed
|
|
|
|
class_emb = pos_embed[:, 0]
|
|
|
|
pos_embed = pos_embed[:, 1:]
|
|
|
|
dim = x.shape[-1]
|
|
|
|
pos_embed = nn.functional.interpolate(
|
|
|
|
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)),
|
|
|
|
dim).permute(0, 3, 1, 2),
|
|
|
|
scale_factor=math.sqrt(npatch / N),
|
|
|
|
mode='bicubic',
|
|
|
|
)
|
|
|
|
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
|
|
return torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1)
|
|
|
|
|
|
|
|
def forward_selfattention(self, x, n=1):
|
|
|
|
# n=1 return the last layer attn map; otherwise return attn maps in all layers
|
|
|
|
|
|
|
|
B, nc, w, h = x.shape
|
|
|
|
N = self.pos_embed.shape[1] - 1
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
|
|
|
|
# interpolate patch embeddings
|
|
|
|
dim = x.shape[-1]
|
|
|
|
w0 = w // self.patch_embed.patch_size
|
|
|
|
h0 = h // self.patch_embed.patch_size
|
|
|
|
class_pos_embed = self.pos_embed[:, 0]
|
|
|
|
patch_pos_embed = self.pos_embed[:, 1:]
|
|
|
|
patch_pos_embed = nn.functional.interpolate(
|
|
|
|
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)),
|
|
|
|
dim).permute(0, 3, 1, 2),
|
|
|
|
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
|
|
|
mode='bicubic',
|
|
|
|
)
|
|
|
|
if w0 != patch_pos_embed.shape[-2]:
|
|
|
|
helper = torch.zeros(h0)[None, None, None, :].repeat(
|
|
|
|
1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device)
|
|
|
|
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2)
|
|
|
|
if h0 != patch_pos_embed.shape[-1]:
|
|
|
|
helper = torch.zeros(w0)[None, None, :, None].repeat(
|
|
|
|
1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device)
|
|
|
|
pos_embed = torch.cat((patch_pos_embed, helper), dim=-1)
|
|
|
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
|
|
pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed),
|
|
|
|
dim=1)
|
|
|
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
x = x + pos_embed
|
|
|
|
x = self.pos_drop(x)
|
|
|
|
|
|
|
|
if n == 1:
|
|
|
|
return self.forward_last_selfattention(x)
|
|
|
|
else:
|
|
|
|
return self.forward_all_selfattention(x)
|
|
|
|
|
|
|
|
def forward_last_selfattention(self, x):
|
|
|
|
for i, blk in enumerate(self.blocks):
|
|
|
|
if i < len(self.blocks) - 1:
|
|
|
|
x = blk(x)
|
|
|
|
else:
|
|
|
|
return blk(x, return_attention=True)
|
|
|
|
|
|
|
|
def forward_all_selfattention(self, x):
|
|
|
|
attn_out = []
|
|
|
|
for i, blk in enumerate(self.blocks):
|
|
|
|
x, attn = blk.forward_fea_and_attn(x)
|
|
|
|
attn_out.append(attn)
|
|
|
|
|
|
|
|
return attn_out
|
|
|
|
|
|
|
|
def forward_return_n_last_blocks(self,
|
|
|
|
x,
|
|
|
|
n=1,
|
|
|
|
return_patch_avgpool=False,
|
|
|
|
depths=[]):
|
|
|
|
B = x.shape[0]
|
|
|
|
x = self.patch_embed(x)
|
|
|
|
|
|
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed)
|
|
|
|
x = x + pos_embed
|
|
|
|
x = self.pos_drop(x)
|
|
|
|
|
|
|
|
# we will return the [CLS] tokens from the `n` last blocks
|
|
|
|
output = []
|
|
|
|
for i, blk in enumerate(self.blocks):
|
|
|
|
x = blk(x)
|
|
|
|
if len(self.blocks) - i <= n:
|
|
|
|
output.append(self.norm(x)[:, 0])
|
|
|
|
if return_patch_avgpool:
|
|
|
|
x = self.norm(x)
|
|
|
|
# In addition to the [CLS] tokens from the `n` last blocks, we also return
|
|
|
|
# the patch tokens from the last block. This is useful for linear eval.
|
|
|
|
output.append(torch.mean(x[:, 1:], dim=1))
|
|
|
|
return torch.cat(output, dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_deit_tiny_p16(patch_size=16, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=patch_size,
|
|
|
|
embed_dim=192,
|
|
|
|
depth=12,
|
|
|
|
num_heads=3,
|
|
|
|
mlp_ratio=4,
|
|
|
|
qkv_bias=True,
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_deit_small_p16(patch_size=16, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=patch_size,
|
|
|
|
embed_dim=384,
|
|
|
|
depth=12,
|
|
|
|
num_heads=6,
|
|
|
|
mlp_ratio=4,
|
|
|
|
qkv_bias=True,
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_vit_base_p16(patch_size=16, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=patch_size,
|
|
|
|
embed_dim=768,
|
|
|
|
depth=12,
|
|
|
|
num_heads=12,
|
|
|
|
mlp_ratio=4,
|
|
|
|
qkv_bias=True,
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_vit_large_p16(patch_size=16, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=patch_size,
|
|
|
|
embed_dim=1024,
|
|
|
|
depth=24,
|
|
|
|
num_heads=16,
|
|
|
|
mlp_ratio=4,
|
|
|
|
qkv_bias=True,
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
|
|
**kwargs)
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def dynamic_vit_huge_p14(patch_size=14, **kwargs):
|
|
|
|
model = VisionTransformer(
|
|
|
|
patch_size=patch_size,
|
|
|
|
embed_dim=1280,
|
|
|
|
depth=32,
|
|
|
|
num_heads=16,
|
|
|
|
mlp_ratio=4,
|
|
|
|
qkv_bias=True,
|
|
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
|
|
|
**kwargs)
|
|
|
|
return model
|