EasyCV/easycv/models/loss/set_criterion/set_criterion.py

535 lines
22 KiB
Python
Raw Normal View History

# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.nn as nn
import torch.nn.functional as F
from easycv.models.detection.utils import (accuracy, box_cxcywh_to_xyxy,
generalized_box_iou)
from easycv.models.loss.focal_loss import py_sigmoid_focal_loss
from easycv.utils.dist_utils import get_dist_info, is_dist_available
class SetCriterion(nn.Module):
""" This class computes the loss for Conditional DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self,
num_classes,
matcher,
weight_dict,
losses,
eos_coef=None,
loss_class_type='ce'):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.losses = losses
self.loss_class_type = loss_class_type
if self.loss_class_type == 'ce':
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = eos_coef
self.register_buffer('empty_weight', empty_weight)
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
"""Classification loss (Binary focal loss)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat(
[t['labels'][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2],
self.num_classes,
dtype=torch.int64,
device=src_logits.device)
target_classes[idx] = target_classes_o
if self.loss_class_type == 'ce':
loss_ce = F.cross_entropy(
src_logits.transpose(1, 2), target_classes, self.empty_weight)
elif self.loss_class_type == 'focal_loss':
target_classes_onehot = torch.zeros([
src_logits.shape[0], src_logits.shape[1],
src_logits.shape[2] + 1
],
dtype=src_logits.dtype,
layout=src_logits.layout,
device=src_logits.device)
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)
target_classes_onehot = target_classes_onehot[:, :, :-1]
loss_ce = py_sigmoid_focal_loss(
src_logits,
target_classes_onehot,
alpha=0.25,
gamma=2,
reduction='none').mean(1).sum() / num_boxes
loss_ce = loss_ce * src_logits.shape[1]
losses = {'loss_ce': loss_ce}
if log:
# TODO this should probably be a separate loss, not hacked in this one here
losses['class_error'] = 100 - accuracy(src_logits[idx],
target_classes_o)[0]
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
"""
pred_logits = outputs['pred_logits']
device = pred_logits.device
tgt_lengths = torch.as_tensor([len(v['labels']) for v in targets],
device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (pred_logits.argmax(-1) !=
pred_logits.shape[-1] - 1).sum(1)
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
losses = {'cardinality_error': card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
assert 'pred_boxes' in outputs
idx = self._get_src_permutation_idx(indices)
src_boxes = outputs['pred_boxes'][idx]
target_boxes = torch.cat(
[t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
losses = {}
losses['loss_bbox'] = loss_bbox.sum() / num_boxes
loss_giou = 1 - torch.diag(
generalized_box_iou(
box_cxcywh_to_xyxy(src_boxes),
box_cxcywh_to_xyxy(target_boxes)))
losses['loss_giou'] = loss_giou.sum() / num_boxes
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat(
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat(
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
loss_map = {
'labels': self.loss_labels,
'cardinality': self.loss_cardinality,
'boxes': self.loss_boxes,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
def forward(self, outputs, targets, num_boxes=None, return_indices=False):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
return_indices: used for vis. if True, the layer0-5 indices will be returned as well.
"""
outputs_without_aux = {
k: v
for k, v in outputs.items() if k != 'aux_outputs'
}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
if return_indices:
indices0_copy = indices
indices_list = []
if num_boxes is None:
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes = sum(len(t['labels']) for t in targets)
num_boxes = torch.as_tensor([num_boxes],
dtype=torch.float,
device=next(iter(
outputs.values())).device)
if is_dist_available():
torch.distributed.all_reduce(num_boxes)
_, world_size = get_dist_info()
num_boxes = torch.clamp(num_boxes / world_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
l_dict = self.get_loss(loss, outputs, targets, indices, num_boxes)
l_dict = {
k: v * (self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
indices = self.matcher(aux_outputs, targets)
if return_indices:
indices_list.append(indices)
for loss in self.losses:
if loss == 'masks':
# Intermediate masks losses are too costly to compute, we ignore them.
continue
kwargs = {}
if loss == 'labels':
# Logging is enabled only for the last layer
kwargs = {'log': False}
l_dict = self.get_loss(loss, aux_outputs, targets, indices,
num_boxes, **kwargs)
l_dict = {
k + f'_{i}': v *
(self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
# interm_outputs loss
if 'interm_outputs' in outputs:
interm_outputs = outputs['interm_outputs']
indices = self.matcher(interm_outputs, targets)
if return_indices:
indices_list.append(indices)
for loss in self.losses:
if loss == 'masks':
# Intermediate masks losses are too costly to compute, we ignore them.
continue
kwargs = {}
if loss == 'labels':
# Logging is enabled only for the last layer
kwargs = {'log': False}
l_dict = self.get_loss(loss, interm_outputs, targets, indices,
num_boxes, **kwargs)
l_dict = {
k + '_interm':
v * (self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
if return_indices:
indices_list.append(indices0_copy)
return losses, indices_list
return losses
class CDNCriterion(SetCriterion):
""" This class computes the loss for Conditional DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self,
num_classes,
matcher,
weight_dict,
losses,
eos_coef=None,
loss_class_type='ce'):
super().__init__(
num_classes=num_classes,
matcher=matcher,
weight_dict=weight_dict,
losses=losses,
eos_coef=eos_coef,
loss_class_type=loss_class_type)
def prep_for_dn(self, dn_meta):
output_known_lbs_bboxes = dn_meta['output_known_lbs_bboxes']
num_dn_groups, pad_size = dn_meta['num_dn_group'], dn_meta['pad_size']
assert pad_size % num_dn_groups == 0
single_pad = pad_size // num_dn_groups
return output_known_lbs_bboxes, single_pad, num_dn_groups
def forward(self, outputs, targets, aux_num, num_boxes):
# Compute the average number of target boxes accross all nodes, for normalization purposes
dn_meta = outputs['dn_meta']
losses = {}
if self.training and dn_meta and 'output_known_lbs_bboxes' in dn_meta:
output_known_lbs_bboxes, single_pad, scalar = self.prep_for_dn(
dn_meta)
dn_pos_idx = []
dn_neg_idx = []
for i in range(len(targets)):
if len(targets[i]['labels']) > 0:
t = torch.range(0,
len(targets[i]['labels']) -
1).long().cuda()
t = t.unsqueeze(0).repeat(scalar, 1)
tgt_idx = t.flatten()
output_idx = (torch.tensor(range(scalar)) *
single_pad).long().cuda().unsqueeze(1) + t
output_idx = output_idx.flatten()
else:
output_idx = tgt_idx = torch.tensor([]).long().cuda()
dn_pos_idx.append((output_idx, tgt_idx))
dn_neg_idx.append((output_idx + single_pad // 2, tgt_idx))
output_known_lbs_bboxes = dn_meta['output_known_lbs_bboxes']
l_dict = {}
for loss in self.losses:
kwargs = {}
if 'labels' in loss:
kwargs = {'log': False}
l_dict.update(
self.get_loss(loss, output_known_lbs_bboxes, targets,
dn_pos_idx, num_boxes * scalar, **kwargs))
l_dict = {
k + '_dn':
v * (self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
else:
l_dict = dict()
l_dict['loss_bbox_dn'] = torch.as_tensor(0.).to('cuda')
l_dict['loss_giou_dn'] = torch.as_tensor(0.).to('cuda')
l_dict['loss_ce_dn'] = torch.as_tensor(0.).to('cuda')
losses.update(l_dict)
for i in range(aux_num):
if self.training and dn_meta and 'output_known_lbs_bboxes' in dn_meta:
aux_outputs_known = output_known_lbs_bboxes['aux_outputs'][i]
l_dict = {}
for loss in self.losses:
kwargs = {}
if 'labels' in loss:
kwargs = {'log': False}
l_dict.update(
self.get_loss(loss, aux_outputs_known, targets,
dn_pos_idx, num_boxes * scalar,
**kwargs))
l_dict = {
k + f'_dn_{i}':
v * (self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
else:
l_dict = dict()
l_dict['loss_bbox_dn'] = torch.as_tensor(0.).to('cuda')
l_dict['loss_giou_dn'] = torch.as_tensor(0.).to('cuda')
l_dict['loss_ce_dn'] = torch.as_tensor(0.).to('cuda')
l_dict = {
k + f'_{i}':
v * (self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
return losses
class DNCriterion(nn.Module):
""" This class computes the loss for Conditional DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, weight_dict):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.weight_dict = weight_dict
def prepare_for_loss(self, mask_dict):
"""
prepare dn components to calculate loss
Args:
mask_dict: a dict that contains dn information
"""
output_known_class, output_known_coord = mask_dict[
'output_known_lbs_bboxes']
known_labels, known_bboxs = mask_dict['known_lbs_bboxes']
map_known_indice = mask_dict['map_known_indice']
known_indice = mask_dict['known_indice']
batch_idx = mask_dict['batch_idx']
bid = batch_idx[known_indice]
if len(output_known_class) > 0:
output_known_class = output_known_class.permute(
1, 2, 0, 3)[(bid, map_known_indice)].permute(1, 0, 2)
output_known_coord = output_known_coord.permute(
1, 2, 0, 3)[(bid, map_known_indice)].permute(1, 0, 2)
num_tgt = known_indice.numel()
return known_labels, known_bboxs, output_known_class, output_known_coord, num_tgt
def tgt_loss_boxes(
self,
src_boxes,
tgt_boxes,
num_tgt,
):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
if len(tgt_boxes) == 0:
return {
'loss_bbox': torch.as_tensor(0.).to('cuda'),
'loss_giou': torch.as_tensor(0.).to('cuda'),
}
loss_bbox = F.l1_loss(src_boxes, tgt_boxes, reduction='none')
losses = {}
losses['loss_bbox'] = loss_bbox.sum() / num_tgt
loss_giou = 1 - torch.diag(
generalized_box_iou(
box_cxcywh_to_xyxy(src_boxes), box_cxcywh_to_xyxy(tgt_boxes)))
losses['loss_giou'] = loss_giou.sum() / num_tgt
return losses
def tgt_loss_labels(self,
src_logits_,
tgt_labels_,
num_tgt,
focal_alpha,
log=False):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
if len(tgt_labels_) == 0:
return {
'loss_ce': torch.as_tensor(0.).to('cuda'),
'class_error': torch.as_tensor(0.).to('cuda'),
}
src_logits, tgt_labels = src_logits_.unsqueeze(
0), tgt_labels_.unsqueeze(0)
target_classes_onehot = torch.zeros([
src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1
],
dtype=src_logits.dtype,
layout=src_logits.layout,
device=src_logits.device)
target_classes_onehot.scatter_(2, tgt_labels.unsqueeze(-1), 1)
target_classes_onehot = target_classes_onehot[:, :, :-1]
loss_ce = py_sigmoid_focal_loss(
src_logits,
target_classes_onehot,
alpha=focal_alpha,
gamma=2,
reduction='none').mean(1).sum() / num_tgt * src_logits.shape[1]
losses = {'loss_ce': loss_ce}
if log:
losses['class_error'] = 100 - accuracy(src_logits_, tgt_labels_)[0]
return losses
def forward(self, mask_dict, aux_num):
"""
compute dn loss in criterion
Args:
mask_dict: a dict for dn information
training: training or inference flag
aux_num: aux loss number
"""
losses = {}
if self.training and 'output_known_lbs_bboxes' in mask_dict:
known_labels, known_bboxs, output_known_class, output_known_coord, num_tgt = self.prepare_for_loss(
mask_dict)
l_dict = self.tgt_loss_labels(output_known_class[-1], known_labels,
num_tgt, 0.25)
l_dict = {
k + '_dn':
v * (self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
l_dict = self.tgt_loss_boxes(output_known_coord[-1], known_bboxs,
num_tgt)
l_dict = {
k + '_dn':
v * (self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
else:
losses['loss_bbox_dn'] = torch.as_tensor(0.).to('cuda')
losses['loss_giou_dn'] = torch.as_tensor(0.).to('cuda')
losses['loss_ce_dn'] = torch.as_tensor(0.).to('cuda')
if aux_num:
for i in range(aux_num):
# dn aux loss
if self.training and 'output_known_lbs_bboxes' in mask_dict:
l_dict = self.tgt_loss_labels(output_known_class[i],
known_labels, num_tgt, 0.25)
l_dict = {
k + f'_dn_{i}': v *
(self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
l_dict = self.tgt_loss_boxes(output_known_coord[i],
known_bboxs, num_tgt)
l_dict = {
k + f'_dn_{i}': v *
(self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
else:
l_dict = dict()
l_dict['loss_bbox_dn'] = torch.as_tensor(0.).to('cuda')
l_dict['loss_giou_dn'] = torch.as_tensor(0.).to('cuda')
l_dict['loss_ce_dn'] = torch.as_tensor(0.).to('cuda')
l_dict = {
k + f'_{i}': v *
(self.weight_dict[k] if k in self.weight_dict else 1.0)
for k, v in l_dict.items()
}
losses.update(l_dict)
return losses