363 lines
14 KiB
Python
Raw Normal View History

# Copyright (c) Facebook, Inc. and its affiliates.
from typing import List, Optional
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torchvision
from mmcv.runner import get_dist_info
from torch import Tensor, nn
from .point_rend import (get_uncertain_point_coords_with_randomness,
point_sample)
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
class NestedTensor(object):
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
# type: (Device) -> NestedTensor # noqa
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
assert mask is not None
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
# TODO make this more general
if tensor_list[0].ndim == 3:
if torchvision._is_tracing():
# nested_tensor_from_tensor_list() does not export well to ONNX
# call _onnx_nested_tensor_from_tensor_list() instead
return _onnx_nested_tensor_from_tensor_list(tensor_list)
# TODO make it support different-sized images
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
batch_shape = [len(tensor_list)] + max_size
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask):
pad_img[:img.shape[0], :img.shape[1], :img.shape[2]].copy_(img)
m[:img.shape[1], :img.shape[2]] = False
else:
raise ValueError('not supported')
return NestedTensor(tensor, mask)
# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(
tensor_list: List[Tensor]) -> NestedTensor:
max_size = []
for i in range(tensor_list[0].dim()):
max_size_i = torch.max(
torch.stack([img.shape[i] for img in tensor_list
]).to(torch.float32)).to(torch.int64)
max_size.append(max_size_i)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# m[: img.shape[1], :img.shape[2]] = False
# which is not yet supported in onnx
padded_imgs = []
padded_masks = []
for img in tensor_list:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
padded_img = torch.nn.functional.pad(
img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
padded_mask = torch.nn.functional.pad(m,
(0, padding[2], 0, padding[1]),
'constant', 1)
padded_masks.append(padded_mask.to(torch.bool))
tensor = torch.stack(padded_imgs)
mask = torch.stack(padded_masks)
return NestedTensor(tensor, mask=mask)
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1)
numerator = 2 * (inputs * targets).sum(-1)
denominator = inputs.sum(-1) + targets.sum(-1)
loss = 1 - (numerator + 1) / (denominator + 1)
return loss.sum() / num_masks
dice_loss_jit = torch.jit.script(dice_loss) # type: torch.jit.ScriptModule
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(
inputs, targets, reduction='none')
return loss.mean(1).sum() / num_masks
sigmoid_ce_loss_jit = torch.jit.script(
sigmoid_ce_loss) # type: torch.jit.ScriptModule
def calculate_uncertainty(logits):
"""
We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the
foreground class in `classes`.
Args:
logits (Tensor): A tensor of shape (R, 1, ...) for class-specific or
class-agnostic, where R is the total number of predicted masks in all images and C is
the number of foreground classes. The values are logits.
Returns:
scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with
the most uncertain locations having the highest uncertainty score.
"""
assert logits.shape[1] == 1
gt_class_logits = logits.clone()
return -(torch.abs(gt_class_logits))
# Modified from https://github.com/facebookresearch/detr/blob/master/models/detr.py
class SetCriterion(nn.Module):
"""This class computes the loss for Mask2former.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses,
num_points, oversample_ratio, importance_sample_ratio):
"""Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer('empty_weight', empty_weight)
# pointwise mask loss parameters
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
def loss_labels(self, outputs, targets, indices, num_masks):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits'].float()
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat(
[t['labels'][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2],
self.num_classes,
dtype=torch.int64,
device=src_logits.device)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(
src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {'loss_ce': loss_ce}
return losses
def loss_masks(self, outputs, targets, indices, num_masks):
"""Compute the losses related to the masks: the focal loss and the dice loss.
targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
"""
assert 'pred_masks' in outputs
src_idx = self._get_src_permutation_idx(indices)
tgt_idx = self._get_tgt_permutation_idx(indices)
src_masks = outputs['pred_masks']
src_masks = src_masks[src_idx]
masks = [t['masks'] for t in targets]
# TODO use valid to mask invalid areas due to padding in loss
target_masks, valid = nested_tensor_from_tensor_list(masks).decompose()
target_masks = target_masks.to(src_masks)
target_masks = target_masks[tgt_idx]
# No need to upsample predictions as we are using normalized coordinates :)
# N x 1 x H x W
src_masks = src_masks[:, None]
target_masks = target_masks[:, None]
with torch.no_grad():
# sample point_coords
point_coords = get_uncertain_point_coords_with_randomness(
src_masks,
lambda logits: calculate_uncertainty(logits),
self.num_points,
self.oversample_ratio,
self.importance_sample_ratio,
)
# get gt labels
point_labels = point_sample(
target_masks,
point_coords,
align_corners=False,
).squeeze(1)
point_logits = point_sample(
src_masks,
point_coords,
align_corners=False,
).squeeze(1)
losses = {
'loss_mask': sigmoid_ce_loss_jit(point_logits, point_labels,
num_masks),
'loss_dice': dice_loss_jit(point_logits, point_labels, num_masks),
}
del src_masks
del target_masks
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat(
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat(
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_masks):
loss_map = {
'labels': self.loss_labels,
'masks': self.loss_masks,
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_masks)
def forward(self, outputs, targets):
"""This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {
k: v
for k, v in outputs.items() if k != 'aux_outputs'
}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_masks = sum(len(t['labels']) for t in targets)
num_masks = torch.as_tensor([num_masks],
dtype=torch.float,
device=next(iter(outputs.values())).device)
if dist.is_available() and dist.is_initialized():
torch.distributed.all_reduce(num_masks)
rank, world_size = get_dist_info()
num_masks = torch.clamp(num_masks / world_size, min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(
self.get_loss(loss, outputs, targets, indices, num_masks))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
l_dict = self.get_loss(loss, aux_outputs, targets, indices,
num_masks)
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
return losses
def __repr__(self):
head = 'Criterion ' + self.__class__.__name__
body = [
'matcher: {}'.format(self.matcher.__repr__(_repr_indent=8)),
'losses: {}'.format(self.losses),
'weight_dict: {}'.format(self.weight_dict),
'num_classes: {}'.format(self.num_classes),
'eos_coef: {}'.format(self.eos_coef),
'num_points: {}'.format(self.num_points),
'oversample_ratio: {}'.format(self.oversample_ratio),
'importance_sample_ratio: {}'.format(self.importance_sample_ratio),
]
_repr_indent = 4
lines = [head] + [' ' * _repr_indent + line for line in body]
return '\n'.join(lines)