EasyCV/docs/source/tutorials/EasyCV图像分割Mask2Former.ipynb

372 lines
10 KiB
Plaintext
Raw Normal View History

2022-11-07 10:22:46 +08:00
{
"cells": [
{
"cell_type": "markdown",
"id": "69debbc2-30e8-4390-805a-cb6ebad35f3f",
"metadata": {
"tags": []
},
"source": [
"## EasyCV图像分割-Mask2Former\n",
"本文将介绍如何利用EasyCV使用Transformer-based图像分割算法[Mask2Former](https://arxiv.org/pdf/2112.01527.pdf)进行图像分割模型的训练,以及如何利用训练好的模型进行图像分割预测\n",
" \n"
]
},
{
"cell_type": "markdown",
"id": "b9ef9614-cb63-487f-bafb-c62c90ae607b",
"metadata": {},
"source": [
"## 运行环境要求\n",
"\n",
"PAI-Pytorch镜像 or 原生Pytorch1.8+以上环境 GPU机器 内存32G以上"
]
},
{
"cell_type": "markdown",
"id": "f855f736-c08a-44c2-b1c1-33a8e7043864",
"metadata": {
"tags": []
},
"source": [
"## 安装依赖包\n",
"\n",
"注: 在PAI-DSW docker中无需安装相关依赖可跳过此部分 在本地notebook环境中执行\n"
]
},
{
"cell_type": "markdown",
"id": "43e60ee5-f52f-4045-bc69-4a123731a5a5",
"metadata": {},
"source": [
"1、 首先安装pytorch和对应版本的torchvision支持Pytorch1.8以上版本"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f97b2295-4d67-4a83-8637-ecde48fa3001",
"metadata": {},
"outputs": [],
"source": [
"# install pytorch and torch vision\n",
"! conda install --yes pytorch==1.10.0 torchvision==0.11.0 -c pytorch"
]
},
{
"cell_type": "markdown",
"id": "ff3ed9f8-703d-416e-8b70-10a8ce029e8d",
"metadata": {},
"source": [
"2、获取torch和cuda版本安装对应版本的mmcv和nvidia-dali"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c95571d5-3065-40b3-ad53-dc3063db8604",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import os\n",
"os.environ['CUDA']='cu' + torch.version.cuda.replace('.', '')\n",
"os.environ['Torch']='torch'+torch.version.__version__.replace('+PAI', '')\n",
"!echo \"cuda version: $CUDA\"\n",
"!echo \"pytorch version: $Torch\""
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ce3dca16-9baf-42f8-94c4-5ea7f087d61e",
"metadata": {},
"outputs": [],
"source": [
"# install some python deps\n",
"! pip install mmdet\n",
"! pip install mmcv-full==1.4.4 -f https://download.openmmlab.com/mmcv/dist/${CUDA}/${Torch}/index.html\n",
"! pip install http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/third_party/nvidia_dali_cuda100-0.25.0-1535750-py3-none-manylinux2014_x86_64.whl"
]
},
{
"cell_type": "markdown",
"id": "3dee3a99-191a-4515-97dd-80841db43775",
"metadata": {},
"source": [
"3、 安装EasyCV算法包"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7f03f9e9-6029-4918-b8dc-533db9c7fae3",
"metadata": {},
"outputs": [],
"source": [
"pip install pai-easycv"
]
},
{
"cell_type": "markdown",
"id": "3483904d-91dd-44c4-a486-246aa38d4124",
"metadata": {},
"source": [
"4、 简单验证"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d382373-76a0-4fbc-b09f-5d082aab5104",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from easycv.apis import *"
]
},
{
"cell_type": "markdown",
"id": "6da90a06",
"metadata": {},
"source": [
"5、安装deformable_attention"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a5d35b9",
"metadata": {},
"outputs": [],
"source": [
"import easycv\n",
"print(easycv.__file__)\n",
"# 进入easycv安装目录编译deformable_attention\n",
"! cd /home/pai/lib/python3.6/site-packages/easycv/thirdparty/deformable_attention && python setup.py build install "
]
},
{
"cell_type": "markdown",
"id": "29bb3d55-d00b-453b-9522-c686260e325c",
"metadata": {},
"source": [
"## 数据准备\n",
"\n",
"接下来介绍基于coco数据集的实例分割训练示例你可以下载[COCO2017](https://cocodataset.org/#download)数据也可以使用我们提供了示例COCO数据"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9492b324-17d9-4963-b7dd-a49f684c54c3",
"metadata": {},
"outputs": [],
"source": [
"! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/small_coco_demo/small_coco_demo.tar.gz && tar -zxf small_coco_demo.tar.gz"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5fdc9dc3-0886-493f-be5b-f858eff72164",
"metadata": {},
"outputs": [],
"source": [
"# 重命名文件夹\n",
"! mkdir -p data/ && mv small_coco_demo database/coco"
]
},
{
"cell_type": "markdown",
"id": "dfcdc227",
"metadata": {},
"source": [
"data/coco格式如下\n",
"\n",
"```shell\n",
"data/coco/\n",
"├── annotations\n",
"│ ├── instances_train2017.json\n",
"│ └── instances_val2017.json\n",
"├── train2017\n",
"│ ├── 000000005802.jpg\n",
"│ ├── 000000060623.jpg\n",
"│ ├── 000000086408.jpg\n",
"│ ├── 000000118113.jpg\n",
"│ ├── 000000184613.jpg\n",
"│ ├── 000000193271.jpg\n",
"│ ├── 000000222564.jpg\n",
"│ ...\n",
"│ └── 000000574769.jpg\n",
"└── val2017\n",
" ├── 000000006818.jpg\n",
" ├── 000000017627.jpg\n",
" ├── 000000037777.jpg\n",
" ├── 000000087038.jpg\n",
" ├── 000000174482.jpg\n",
" ├── 000000181666.jpg\n",
" ├── 000000184791.jpg\n",
" ├── 000000252219.jpg\n",
" ...\n",
" └── 000000522713.jpg\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "c9bd7101-3072-417c-ac54-5d7d254b31b4",
"metadata": {},
"source": [
"## 模型训练\n",
"\n",
"这个Demo中我们采用[Mask2Former](https://arxiv.org/pdf/2112.01527.pdf)图像分割算法训练ResNet50主干网络 下载示例配置文件"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab669385-8525-4694-8388-148ba1c2753a",
"metadata": {},
"outputs": [],
"source": [
"! rm -rf mask2former_r50_8xb2_e50_instance.py\n",
"! wget https://raw.githubusercontent.com/alibaba/EasyCV/master/configs/segmentation/mask2former/mask2former_r50_8xb2_e50_instance.py"
]
},
{
"cell_type": "markdown",
"id": "2890d267-6b95-47e6-9b51-83402446fa7f",
"metadata": {},
"source": [
"为了适配小数据我们对配置文件mask2former_r50_8xb2_e50_instance.py做如下字段的修改减少训练epoch数目加大打印日志的频率\n",
"\n",
"```python\n",
"\n",
"total_epochs = 3\n",
"\n",
"#optimizer.lr -> 0.000001\n",
"# optimizer\n",
"optimizer = dict(\n",
" type='AdamW',\n",
" lr=0.000001,\n",
" weight_decay=0.05,\n",
" eps=1e-8,\n",
" betas=(0.9, 0.999),\n",
" paramwise_options={\n",
" 'backbone': dict(lr_mult=0.1),\n",
" 'query_embed': dict(weight_decay=0.),\n",
" 'query_feat': dict(weight_decay=0.),\n",
" 'level_embed': dict(weight_decay=0.),\n",
" 'norm': dict(weight_decay=0.),\n",
" })\n",
"\n",
"# log_config.interval 1\n",
"log_config = dict(interval=1)\n",
"\n",
"```\n",
"\n",
"注意: 如果是使用COCO完整数据训练为了保证效果建议使用单机8卡进行训练\n",
"\n",
"为了保证模型效果,我们在[预训练模型](http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/segmentation/mask2former_r50_instance/epoch_50.pth)基础上finetune 执行如下命令启动训练"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aaf88f46-a578-4dfc-a33f-afa0357f734a",
"metadata": {},
"outputs": [],
"source": [
"!python -m easycv.tools.train mask2former_r50_8xb2_e50_instance.py --work_dir work_dir/segmentatino/mask2former_r50_instance --load_from http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/segmentation/mask2former_r50_instance/epoch_50.pth"
]
},
{
"cell_type": "markdown",
"id": "fc43e194-d8e7-4796-af3a-1f64663b9744",
"metadata": {},
"source": [
"### 预测"
]
},
{
"cell_type": "markdown",
"id": "2cc9e6fc",
"metadata": {},
"source": [
"下载测试图片"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "973d5bd4",
"metadata": {},
"outputs": [],
"source": [
"! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/segmentation/000000123213.jpg"
]
},
{
"cell_type": "markdown",
"id": "3ecb723f",
"metadata": {},
"source": [
"使用训练好的模型进行图像分割预测"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a5a3632",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import cv2\n",
"from IPython.display import Image\n",
"from easycv.predictors.segmentation import Mask2formerPredictor\n",
"\n",
"\n",
"predictor = Mask2formerPredictor(model_path='work_dir/segmentatino/mask2former_r50_instance/epoch_3.pth',\n",
" config_file='mask2former_r50_8xb2_e50_instance.py',\n",
" task_mode='instance')\n",
"img = cv2.imread('000000123213.jpg')\n",
"predict_out = predictor(['000000123213.jpg'])\n",
"instance_img = predictor.show_instance(img, **predict_out[0])\n",
"cv2.imwrite('instance_out.jpg',instance_img)\n",
"display(Image('000000123213.jpg'))\n",
"display(Image('instance_out.jpg'))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.6.13 ('torch1.10')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.13"
},
"vscode": {
"interpreter": {
"hash": "ffac244d5fb3e091416ac35ee470bc03f8b6d092e3cccc2d90f82acef7653459"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}