359 lines
15 KiB
Python
Raw Normal View History

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from easycv.models.builder import HEADS, build_neck
from easycv.models.detection.utils import (HungarianMatcher, accuracy,
box_cxcywh_to_xyxy,
box_xyxy_to_cxcywh,
generalized_box_iou)
from easycv.models.utils import (MLP, get_world_size,
is_dist_avail_and_initialized)
@HEADS.register_module()
class DETRHead(nn.Module):
"""Implements the DETR transformer head.
See `paper: End-to-End Object Detection with Transformers
<https://arxiv.org/pdf/2005.12872>`_ for details.
Args:
num_classes (int): Number of categories excluding the background.
"""
_version = 2
def __init__(self,
num_classes,
embed_dims,
eos_coef=0.1,
transformer=None,
cost_dict={
'cost_class': 1,
'cost_bbox': 5,
'cost_giou': 2,
},
weight_dict={
'loss_ce': 1,
'loss_bbox': 5,
'loss_giou': 2
},
**kwargs):
super(DETRHead, self).__init__()
self.matcher = HungarianMatcher(cost_dict=cost_dict)
self.criterion = SetCriterion(
num_classes,
matcher=self.matcher,
weight_dict=weight_dict,
eos_coef=eos_coef,
losses=['labels', 'boxes', 'cardinality'])
self.postprocess = PostProcess()
self.transformer = build_neck(transformer)
self.class_embed = nn.Linear(embed_dims, num_classes + 1)
self.bbox_embed = MLP(embed_dims, embed_dims, 4, 3)
self.num_classes = num_classes
def init_weights(self):
"""Initialize weights of the detr head."""
self.transformer.init_weights()
def forward(self, feats, img_metas):
"""Forward function.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
img_metas (list[dict]): List of image information.
Returns:
tuple[list[Tensor], list[Tensor]]: Outputs for all scale levels.
- all_cls_scores_list (list[Tensor]): Classification scores \
for each scale level. Each is a 4D-tensor with shape \
[nb_dec, bs, num_query, cls_out_channels]. Note \
`cls_out_channels` should includes background.
- all_bbox_preds_list (list[Tensor]): Sigmoid regression \
outputs for each scale level. Each is a 4D-tensor with \
normalized coordinate format (cx, cy, w, h) and shape \
[nb_dec, bs, num_query, 4].
"""
feats = self.transformer(feats, img_metas)
outputs_class = self.class_embed(feats)
outputs_coord = self.bbox_embed(feats).sigmoid()
out = {
'pred_logits': outputs_class[-1],
'pred_boxes': outputs_coord[-1]
}
out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord)
return out
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{
'pred_logits': a,
'pred_boxes': b
} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
# over-write because img_metas are needed as inputs for bbox_head.
def forward_train(self, x, img_metas, gt_bboxes, gt_labels):
"""Forward function for training mode.
Args:
x (list[Tensor]): Features from backbone.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
proposal_cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
outputs = self.forward(x, img_metas)
for i in range(len(img_metas)):
img_h, img_w, _ = img_metas[i]['img_shape']
# DETR regress the relative position of boxes (cxcywh) in the image.
# Thus the learning target should be normalized by the image size, also
# the box format should be converted from defaultly x1y1x2y2 to cxcywh.
factor = outputs['pred_boxes'].new_tensor(
[img_w, img_h, img_w, img_h]).unsqueeze(0)
gt_bboxes[i] = box_xyxy_to_cxcywh(gt_bboxes[i]) / factor
targets = []
for gt_label, gt_bbox in zip(gt_labels, gt_bboxes):
targets.append({'labels': gt_label, 'boxes': gt_bbox})
losses = self.criterion(outputs, targets)
return losses
def forward_test(self, x, img_metas):
outputs = self.forward(x, img_metas)
ori_shape_list = []
for i in range(len(img_metas)):
ori_h, ori_w, _ = img_metas[i]['ori_shape']
ori_shape_list.append(torch.as_tensor([ori_h, ori_w]))
orig_target_sizes = torch.stack(ori_shape_list, dim=0)
results = self.postprocess(outputs, orig_target_sizes, img_metas)
return results
class PostProcess(nn.Module):
""" This module converts the model's output into the format expected by the coco api"""
@torch.no_grad()
def forward(self, outputs, target_sizes, img_metas):
""" Perform the computation
Parameters:
outputs: raw outputs of the model
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
assert len(out_logits) == len(target_sizes)
assert target_sizes.shape[1] == 2
prob = F.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# convert to [x0, y0, x1, y1] format
boxes = box_cxcywh_to_xyxy(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h],
dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = {
'detection_boxes': [boxes[0].cpu().numpy()],
'detection_scores': [scores[0].cpu().numpy()],
'detection_classes': [labels[0].cpu().numpy().astype(np.int32)],
'img_metas': img_metas
}
return results
class SetCriterion(nn.Module):
""" This class computes the loss for DETR.
The process happens in two steps:
1) we compute hungarian assignment between ground truth boxes and the outputs of the model
2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
"""
def __init__(self, num_classes, matcher, weight_dict, eos_coef, losses):
""" Create the criterion.
Parameters:
num_classes: number of object categories, omitting the special no-object category
matcher: module able to compute a matching between targets and proposals
weight_dict: dict containing as key the names of the losses and as values their relative weight.
eos_coef: relative classification weight applied to the no-object category
losses: list of all the losses to be applied. See get_loss for list of available losses.
"""
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.weight_dict = weight_dict
self.eos_coef = eos_coef
self.losses = losses
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer('empty_weight', empty_weight)
def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
"""Classification loss (NLL)
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
"""
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat(
[t['labels'][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2],
self.num_classes,
dtype=torch.int64,
device=src_logits.device)
target_classes[idx] = target_classes_o
loss_ce = F.cross_entropy(
src_logits.transpose(1, 2), target_classes,
self.empty_weight) * self.weight_dict['loss_ce']
losses = {'loss_ce': loss_ce}
if log:
# TODO this should probably be a separate loss, not hacked in this one here
losses['class_error'] = 100 - accuracy(src_logits[idx],
target_classes_o)[0]
return losses
@torch.no_grad()
def loss_cardinality(self, outputs, targets, indices, num_boxes):
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
"""
pred_logits = outputs['pred_logits']
device = pred_logits.device
tgt_lengths = torch.as_tensor([len(v['labels']) for v in targets],
device=device)
# Count the number of predictions that are NOT "no-object" (which is the last class)
card_pred = (pred_logits.argmax(-1) !=
pred_logits.shape[-1] - 1).sum(1)
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float())
losses = {'cardinality_error': card_err}
return losses
def loss_boxes(self, outputs, targets, indices, num_boxes):
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
"""
assert 'pred_boxes' in outputs
idx = self._get_src_permutation_idx(indices)
src_boxes = outputs['pred_boxes'][idx]
target_boxes = torch.cat(
[t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
losses = {}
losses['loss_bbox'] = loss_bbox.sum(
) / num_boxes * self.weight_dict['loss_bbox']
loss_giou = 1 - torch.diag(
generalized_box_iou(
box_cxcywh_to_xyxy(src_boxes),
box_cxcywh_to_xyxy(target_boxes)))
losses['loss_giou'] = loss_giou.sum(
) / num_boxes * self.weight_dict['loss_giou']
return losses
def _get_src_permutation_idx(self, indices):
# permute predictions following indices
batch_idx = torch.cat(
[torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx
def _get_tgt_permutation_idx(self, indices):
# permute targets following indices
batch_idx = torch.cat(
[torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
tgt_idx = torch.cat([tgt for (_, tgt) in indices])
return batch_idx, tgt_idx
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
loss_map = {
'labels': self.loss_labels,
'cardinality': self.loss_cardinality,
'boxes': self.loss_boxes
}
assert loss in loss_map, f'do you really want to compute {loss} loss?'
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)
def forward(self, outputs, targets):
""" This performs the loss computation.
Parameters:
outputs: dict of tensors, see the output specification of the model for the format
targets: list of dicts, such that len(targets) == batch_size.
The expected keys in each dict depends on the losses applied, see each loss' doc
"""
outputs_without_aux = {
k: v
for k, v in outputs.items() if k != 'aux_outputs'
}
# Retrieve the matching between the outputs of the last layer and the targets
indices = self.matcher(outputs_without_aux, targets)
# Compute the average number of target boxes accross all nodes, for normalization purposes
num_boxes = sum(len(t['labels']) for t in targets)
num_boxes = torch.as_tensor([num_boxes],
dtype=torch.float,
device=next(iter(outputs.values())).device)
if is_dist_avail_and_initialized():
torch.distributed.all_reduce(num_boxes)
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item()
# Compute all the requested losses
losses = {}
for loss in self.losses:
losses.update(
self.get_loss(loss, outputs, targets, indices, num_boxes))
# In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
if 'aux_outputs' in outputs:
for i, aux_outputs in enumerate(outputs['aux_outputs']):
indices = self.matcher(aux_outputs, targets)
for loss in self.losses:
if loss == 'masks':
# Intermediate masks losses are too costly to compute, we ignore them.
continue
kwargs = {}
if loss == 'labels':
# Logging is enabled only for the last layer
kwargs = {'log': False}
l_dict = self.get_loss(loss, aux_outputs, targets, indices,
num_boxes, **kwargs)
l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
losses.update(l_dict)
return losses