EasyCV/easycv/models/loss/iou_loss.py

192 lines
6.4 KiB
Python
Raw Normal View History

2022-04-02 20:01:06 +08:00
# Copyright (c) Alibaba, Inc. and its affiliates.
import warnings
import mmcv
2022-04-02 20:01:06 +08:00
import torch
import torch.nn as nn
from easycv.models.detection.utils import bbox_overlaps
from easycv.models.loss.utils import weighted_loss
2022-04-02 20:01:06 +08:00
from ..registry import LOSSES
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def iou_loss(pred, target, linear=False, mode='log', eps=1e-6):
"""IoU loss.
Computing the IoU loss between a set of predicted bboxes and target bboxes.
The loss is calculated as negative log of IoU.
Args:
pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (torch.Tensor): Corresponding gt bboxes, shape (n, 4).
linear (bool, optional): If True, use linear scale of loss instead of
log scale. Default: False.
mode (str): Loss scaling mode, including "linear", "square", and "log".
Default: 'log'
eps (float): Eps to avoid log(0).
Return:
torch.Tensor: Loss tensor.
"""
assert mode in ['linear', 'square', 'log']
if linear:
mode = 'linear'
warnings.warn('DeprecationWarning: Setting "linear=True" in '
'iou_loss is deprecated, please use "mode=`linear`" '
'instead.')
ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
if mode == 'linear':
loss = 1 - ious
elif mode == 'square':
loss = 1 - ious**2
elif mode == 'log':
loss = -ious.log()
else:
raise NotImplementedError
return loss
@mmcv.jit(derivate=True, coderize=True)
@weighted_loss
def giou_loss(pred, target, eps=1e-7):
r"""`Generalized Intersection over Union: A Metric and A Loss for Bounding
Box Regression <https://arxiv.org/abs/1902.09630>`_.
Args:
pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2),
shape (n, 4).
target (torch.Tensor): Corresponding gt bboxes, shape (n, 4).
eps (float): Eps to avoid log(0).
Return:
Tensor: Loss tensor.
"""
gious = bbox_overlaps(pred, target, mode='giou', is_aligned=True, eps=eps)
loss = 1 - gious
return loss
@LOSSES.register_module()
class IoULoss(nn.Module):
"""IoULoss.
Computing the IoU loss between a set of predicted bboxes and target bboxes.
Args:
linear (bool): If True, use linear scale of loss else determined
by mode. Default: False.
eps (float): Eps to avoid log(0).
reduction (str): Options are "none", "mean" and "sum".
loss_weight (float): Weight of loss.
mode (str): Loss scaling mode, including "linear", "square", and "log".
Default: 'log'
"""
def __init__(self,
linear=False,
eps=1e-6,
reduction='mean',
loss_weight=1.0,
mode='log'):
super(IoULoss, self).__init__()
assert mode in ['linear', 'square', 'log']
if linear:
mode = 'linear'
warnings.warn('DeprecationWarning: Setting "linear=True" in '
'IOULoss is deprecated, please use "mode=`linear`" '
'instead.')
self.mode = mode
self.linear = linear
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
"""Forward function.
Args:
pred (torch.Tensor): The prediction.
target (torch.Tensor): The learning target of the prediction.
weight (torch.Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Defaults to None. Options are "none", "mean" and "sum".
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
if (weight is not None) and (not torch.any(weight > 0)) and (
reduction != 'none'):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# iou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * iou_loss(
pred,
target,
weight,
mode=self.mode,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
return loss
@LOSSES.register_module()
class GIoULoss(nn.Module):
2022-04-02 20:01:06 +08:00
def __init__(self, eps=1e-6, reduction='mean', loss_weight=1.0):
super(GIoULoss, self).__init__()
self.eps = eps
2022-04-02 20:01:06 +08:00
self.reduction = reduction
self.loss_weight = loss_weight
2022-04-02 20:01:06 +08:00
def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None,
**kwargs):
if weight is not None and not torch.any(weight > 0):
if pred.dim() == weight.dim() + 1:
weight = weight.unsqueeze(1)
return (pred * weight).sum() # 0
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
if weight is not None and weight.dim() > 1:
# TODO: remove this in the future
# reduce the weight of shape (n, 4) to (n,) to match the
# giou_loss of shape (n,)
assert weight.shape == pred.shape
weight = weight.mean(-1)
loss = self.loss_weight * giou_loss(
pred,
target,
weight,
eps=self.eps,
reduction=reduction,
avg_factor=avg_factor,
**kwargs)
2022-04-02 20:01:06 +08:00
return loss