EasyCV/easycv/datasets/classification/raw.py

97 lines
3.3 KiB
Python
Raw Normal View History

2022-04-02 20:01:06 +08:00
# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
from PIL import Image
from easycv.core.visualization.image import imshow_label
2022-04-02 20:01:06 +08:00
from easycv.datasets.registry import DATASETS
from easycv.datasets.shared.base import BaseDataset
@DATASETS.register_module
class ClsDataset(BaseDataset):
"""Dataset for classification
Args:
data_source: data source to parse input data
pipeline: transforms list
"""
def __init__(self, data_source, pipeline):
super(ClsDataset, self).__init__(data_source, pipeline)
def __getitem__(self, idx):
results = self.data_source.get_sample(idx)
img = results['img']
gt_labels = results['gt_labels']
2022-04-02 20:01:06 +08:00
if isinstance(img, list):
# img is list, means contains multi img
imgs_list = []
for img_i in img:
assert isinstance(img_i, Image.Image), \
f'The output from the data source must be an Image, got: {type(img_i)}. \
2022-04-02 20:01:06 +08:00
Please ensure that the list file does not contain labels.'
results['img'] = img_i
img_i = self.pipeline(results)['img'].unsqueeze(0)
imgs_list.append(img_i)
results['img'] = torch.cat(imgs_list, dim=0)
results['gt_labels'] = torch.tensor(gt_labels).long()
2022-04-02 20:01:06 +08:00
else:
results = self.pipeline(results)
return results
2022-04-02 20:01:06 +08:00
def evaluate(self, results, evaluators, logger=None, topk=(1, 5)):
'''evaluate classification task
Args:
results: a dict of list of tensor, including prediction and groundtruth
info, where prediction tensor is NxCand the same with groundtruth labels.
evaluators: a list of evaluator
Return:
eval_result: a dict of float, different metric values
'''
assert len(evaluators) == 1, \
'classification evaluation only support one evaluator'
gt_labels = results.pop('gt_labels')
eval_res = evaluators[0].evaluate(results, gt_labels)
return eval_res
def visualize(self, results, vis_num=10, **kwargs):
"""Visulaize the model output on validation data.
Args:
results: A dictionary containing
class: List of length number of test images.
img_metas: List of length number of test images,
dict of image meta info, containing filename, img_shape,
origin_img_shape and so on.
vis_num: number of images visualized
Returns: A dictionary containing
images: Visulaized images, list of np.ndarray.
img_metas: List of length number of test images,
dict of image meta info, containing filename, img_shape,
origin_img_shape and so on.
"""
vis_imgs = []
# TODO: support img_metas for torch.jit
if results.get('img_metas', None) is None:
return {}
img_metas = results['img_metas'][:vis_num]
labels = results['class']
for i, img_meta in enumerate(img_metas):
filename = img_meta['filename']
vis_img = imshow_label(img=filename, labels=labels, show=False)
vis_imgs.append(vis_img)
output = {'images': vis_imgs, 'img_metas': img_metas}
return output