mirror of
https://github.com/alibaba/EasyCV.git
synced 2025-06-03 14:49:00 +08:00
841 lines
36 KiB
Python
841 lines
36 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
|||
|
import math
|
|||
|
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
import torch.nn as nn
|
|||
|
from mmcv.cnn import ConvModule, Scale
|
|||
|
|
|||
|
from easycv.models.builder import HEADS, build_loss
|
|||
|
from easycv.models.detection.utils import (MlvlPointGenerator, batched_nms,
|
|||
|
bbox2result, distance2bbox,
|
|||
|
filter_scores_and_topk,
|
|||
|
select_single_mlvl)
|
|||
|
from easycv.models.utils import reduce_mean
|
|||
|
from easycv.utils.misc import multi_apply
|
|||
|
|
|||
|
INF = 1e8
|
|||
|
|
|||
|
|
|||
|
@HEADS.register_module()
|
|||
|
class FCOSHead(nn.Module):
|
|||
|
"""Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_.
|
|||
|
The FCOS head does not use anchor boxes. Instead bounding boxes are
|
|||
|
predicted at each pixel and a centerness measure is used to suppress
|
|||
|
low-quality predictions.
|
|||
|
Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training
|
|||
|
tricks used in official repo, which will bring remarkable mAP gains
|
|||
|
of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for
|
|||
|
more detail.
|
|||
|
Args:
|
|||
|
num_classes (int): Number of categories excluding the background
|
|||
|
category.
|
|||
|
in_channels (int): Number of channels in the input feature map.
|
|||
|
strides (list[int] | list[tuple[int, int]]): Strides of points
|
|||
|
in multiple feature levels. Default: (4, 8, 16, 32, 64).
|
|||
|
regress_ranges (tuple[tuple[int, int]]): Regress range of multiple
|
|||
|
level points.
|
|||
|
center_sampling (bool): If true, use center sampling. Default: False.
|
|||
|
center_sample_radius (float): Radius of center sampling. Default: 1.5.
|
|||
|
norm_on_bbox (bool): If true, normalize the regression targets
|
|||
|
with FPN strides. Default: False.
|
|||
|
centerness_on_reg (bool): If true, position centerness on the
|
|||
|
regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
|
|||
|
Default: False.
|
|||
|
conv_bias (bool | str): If specified as `auto`, it will be decided by the
|
|||
|
norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise
|
|||
|
False. Default: "auto".
|
|||
|
loss_cls (dict): Config of classification loss.
|
|||
|
loss_bbox (dict): Config of localization loss.
|
|||
|
loss_centerness (dict): Config of centerness loss.
|
|||
|
norm_cfg (dict): dictionary to construct and config norm layer.
|
|||
|
Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
|
|||
|
init_cfg (dict or list[dict], optional): Initialization config dict.
|
|||
|
Example:
|
|||
|
>>> self = FCOSHead(11, 7)
|
|||
|
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
|
|||
|
>>> cls_score, bbox_pred, centerness = self.forward(feats)
|
|||
|
>>> assert len(cls_score) == len(self.scales)
|
|||
|
""" # noqa: E501
|
|||
|
|
|||
|
def __init__(self,
|
|||
|
num_classes,
|
|||
|
in_channels,
|
|||
|
stacked_convs=4,
|
|||
|
feat_channels=256,
|
|||
|
strides=[8, 16, 32, 64, 128],
|
|||
|
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),
|
|||
|
(512, INF)),
|
|||
|
center_sampling=False,
|
|||
|
center_sample_radius=1.5,
|
|||
|
norm_on_bbox=False,
|
|||
|
centerness_on_reg=False,
|
|||
|
conv_cfg=None,
|
|||
|
loss_cls=dict(
|
|||
|
type='FocalLoss',
|
|||
|
use_sigmoid=True,
|
|||
|
gamma=2.0,
|
|||
|
alpha=0.25,
|
|||
|
loss_weight=1.0),
|
|||
|
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
|
|||
|
loss_centerness=dict(
|
|||
|
type='CrossEntropyLoss',
|
|||
|
use_sigmoid=True,
|
|||
|
loss_weight=1.0),
|
|||
|
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
|
|||
|
conv_bias=True,
|
|||
|
test_cfg=dict(
|
|||
|
nms_pre=1000,
|
|||
|
min_bbox_size=0,
|
|||
|
score_thr=0.05,
|
|||
|
nms=dict(type='nms', iou_threshold=0.5),
|
|||
|
max_per_img=100),
|
|||
|
**kwargs):
|
|||
|
super(FCOSHead, self).__init__()
|
|||
|
|
|||
|
self.regress_ranges = regress_ranges
|
|||
|
self.center_sampling = center_sampling
|
|||
|
self.center_sample_radius = center_sample_radius
|
|||
|
self.norm_on_bbox = norm_on_bbox
|
|||
|
self.centerness_on_reg = centerness_on_reg
|
|||
|
|
|||
|
self.num_classes = num_classes
|
|||
|
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
|
|||
|
if self.use_sigmoid_cls:
|
|||
|
self.cls_out_channels = num_classes
|
|||
|
else:
|
|||
|
self.cls_out_channels = num_classes + 1
|
|||
|
self.in_channels = in_channels
|
|||
|
self.feat_channels = feat_channels
|
|||
|
self.stacked_convs = stacked_convs
|
|||
|
self.strides = strides
|
|||
|
assert conv_bias == 'auto' or isinstance(conv_bias, bool)
|
|||
|
self.conv_bias = conv_bias
|
|||
|
self.loss_cls = build_loss(loss_cls)
|
|||
|
self.loss_bbox = build_loss(loss_bbox)
|
|||
|
|
|||
|
self.prior_generator = MlvlPointGenerator(strides)
|
|||
|
|
|||
|
# In order to keep a more general interface and be consistent with
|
|||
|
# anchor_head. We can think of point like one anchor
|
|||
|
self.num_base_priors = self.prior_generator.num_base_priors[0]
|
|||
|
|
|||
|
self.test_cfg = test_cfg
|
|||
|
self.conv_cfg = conv_cfg
|
|||
|
self.norm_cfg = norm_cfg
|
|||
|
|
|||
|
self._init_layers()
|
|||
|
|
|||
|
self.loss_centerness = build_loss(loss_centerness)
|
|||
|
|
|||
|
def _init_layers(self):
|
|||
|
"""Initialize layers of the head."""
|
|||
|
self._init_cls_convs()
|
|||
|
self._init_reg_convs()
|
|||
|
self._init_predictor()
|
|||
|
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
|
|||
|
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
|
|||
|
|
|||
|
def _init_cls_convs(self):
|
|||
|
"""Initialize classification conv layers of the head."""
|
|||
|
self.cls_convs = nn.ModuleList()
|
|||
|
for i in range(self.stacked_convs):
|
|||
|
chn = self.in_channels if i == 0 else self.feat_channels
|
|||
|
conv_cfg = self.conv_cfg
|
|||
|
self.cls_convs.append(
|
|||
|
ConvModule(
|
|||
|
chn,
|
|||
|
self.feat_channels,
|
|||
|
3,
|
|||
|
stride=1,
|
|||
|
padding=1,
|
|||
|
conv_cfg=conv_cfg,
|
|||
|
norm_cfg=self.norm_cfg,
|
|||
|
bias=self.conv_bias))
|
|||
|
|
|||
|
def _init_reg_convs(self):
|
|||
|
"""Initialize bbox regression conv layers of the head."""
|
|||
|
self.reg_convs = nn.ModuleList()
|
|||
|
for i in range(self.stacked_convs):
|
|||
|
chn = self.in_channels if i == 0 else self.feat_channels
|
|||
|
conv_cfg = self.conv_cfg
|
|||
|
self.reg_convs.append(
|
|||
|
ConvModule(
|
|||
|
chn,
|
|||
|
self.feat_channels,
|
|||
|
3,
|
|||
|
stride=1,
|
|||
|
padding=1,
|
|||
|
conv_cfg=conv_cfg,
|
|||
|
norm_cfg=self.norm_cfg,
|
|||
|
bias=self.conv_bias))
|
|||
|
|
|||
|
def _init_predictor(self):
|
|||
|
"""Initialize predictor layers of the head."""
|
|||
|
self.conv_cls = nn.Conv2d(
|
|||
|
self.feat_channels, self.cls_out_channels, 3, padding=1)
|
|||
|
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
|
|||
|
|
|||
|
def init_weights(self):
|
|||
|
for m in self.modules():
|
|||
|
if isinstance(m, nn.Conv2d):
|
|||
|
torch.nn.init.normal_(m.weight, std=0.01)
|
|||
|
if hasattr(m, 'bias') and m.bias is not None:
|
|||
|
nn.init.constant_(m.bias, 0)
|
|||
|
|
|||
|
# initialize the bias for focal loss
|
|||
|
prior_prob = 0.01
|
|||
|
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
|||
|
torch.nn.init.constant_(self.conv_cls.bias, bias_value)
|
|||
|
|
|||
|
def forward(self, feats):
|
|||
|
"""Forward features from the upstream network.
|
|||
|
Args:
|
|||
|
feats (tuple[Tensor]): Features from the upstream network, each is
|
|||
|
a 4D-tensor.
|
|||
|
Returns:
|
|||
|
tuple:
|
|||
|
cls_scores (list[Tensor]): Box scores for each scale level, \
|
|||
|
each is a 4D-tensor, the channel number is \
|
|||
|
num_points * num_classes.
|
|||
|
bbox_preds (list[Tensor]): Box energies / deltas for each \
|
|||
|
scale level, each is a 4D-tensor, the channel number is \
|
|||
|
num_points * 4.
|
|||
|
centernesses (list[Tensor]): centerness for each scale level, \
|
|||
|
each is a 4D-tensor, the channel number is num_points * 1.
|
|||
|
"""
|
|||
|
return multi_apply(self.forward_single, feats, self.scales,
|
|||
|
self.strides)
|
|||
|
|
|||
|
def forward_single(self, x, scale, stride):
|
|||
|
"""Forward features of a single scale level.
|
|||
|
Args:
|
|||
|
x (Tensor): FPN feature maps of the specified stride.
|
|||
|
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
|
|||
|
the bbox prediction.
|
|||
|
stride (int): The corresponding stride for feature maps, only
|
|||
|
used to normalize the bbox prediction when self.norm_on_bbox
|
|||
|
is True.
|
|||
|
Returns:
|
|||
|
tuple: scores for each class, bbox predictions and centerness \
|
|||
|
predictions of input feature maps.
|
|||
|
"""
|
|||
|
cls_feat = x
|
|||
|
reg_feat = x
|
|||
|
|
|||
|
for cls_layer in self.cls_convs:
|
|||
|
cls_feat = cls_layer(cls_feat)
|
|||
|
cls_score = self.conv_cls(cls_feat)
|
|||
|
|
|||
|
for reg_layer in self.reg_convs:
|
|||
|
reg_feat = reg_layer(reg_feat)
|
|||
|
bbox_pred = self.conv_reg(reg_feat)
|
|||
|
|
|||
|
if self.centerness_on_reg:
|
|||
|
centerness = self.conv_centerness(reg_feat)
|
|||
|
else:
|
|||
|
centerness = self.conv_centerness(cls_feat)
|
|||
|
# scale the bbox_pred of different level
|
|||
|
# float to avoid overflow when enabling FP16
|
|||
|
bbox_pred = scale(bbox_pred).float()
|
|||
|
if self.norm_on_bbox:
|
|||
|
# bbox_pred needed for gradient computation has been modified
|
|||
|
# by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
|
|||
|
# F.relu(bbox_pred) with bbox_pred.clamp(min=0)
|
|||
|
bbox_pred = bbox_pred.clamp(min=0)
|
|||
|
if not self.training:
|
|||
|
bbox_pred *= stride
|
|||
|
else:
|
|||
|
bbox_pred = bbox_pred.exp()
|
|||
|
return cls_score, bbox_pred, centerness
|
|||
|
|
|||
|
def forward_train(self,
|
|||
|
x,
|
|||
|
img_metas,
|
|||
|
gt_bboxes,
|
|||
|
gt_labels=None,
|
|||
|
gt_bboxes_ignore=None,
|
|||
|
proposal_cfg=None,
|
|||
|
**kwargs):
|
|||
|
outs = self.forward(x)
|
|||
|
if gt_labels is None:
|
|||
|
loss_inputs = outs + (gt_bboxes, img_metas)
|
|||
|
else:
|
|||
|
loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
|
|||
|
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
|
|||
|
return losses
|
|||
|
|
|||
|
def forward_test(self, feats, img_metas, rescale=False):
|
|||
|
"""Test function without test-time augmentation.
|
|||
|
Args:
|
|||
|
feats (tuple[torch.Tensor]): Multi-level features from the
|
|||
|
upstream network, each is a 4D-tensor.
|
|||
|
img_metas (list[dict]): List of image information.
|
|||
|
rescale (bool, optional): Whether to rescale the results.
|
|||
|
Defaults to False.
|
|||
|
Returns:
|
|||
|
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
|
|||
|
The first item is ``bboxes`` with shape (n, 5),
|
|||
|
where 5 represent (tl_x, tl_y, br_x, br_y, score).
|
|||
|
The shape of the second tensor in the tuple is ``labels``
|
|||
|
with shape (n, ).
|
|||
|
"""
|
|||
|
outs = self.forward(feats)
|
|||
|
results_list = self.get_bboxes(
|
|||
|
*outs, img_metas=img_metas, rescale=True)
|
|||
|
results = [
|
|||
|
bbox2result(det_bboxes, det_labels, self.num_classes)
|
|||
|
for det_bboxes, det_labels in results_list
|
|||
|
]
|
|||
|
|
|||
|
detection_boxes = []
|
|||
|
detection_scores = []
|
|||
|
detection_classes = []
|
|||
|
for res_i in results:
|
|||
|
bbox_result = res_i
|
|||
|
bboxes = np.vstack(bbox_result)
|
|||
|
labels = [
|
|||
|
np.full(bbox.shape[0], i, dtype=np.int32)
|
|||
|
for i, bbox in enumerate(bbox_result)
|
|||
|
]
|
|||
|
labels = np.concatenate(labels)
|
|||
|
|
|||
|
scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None
|
|||
|
bboxes = bboxes[:, 0:4] if bboxes.shape[1] == 5 else bboxes
|
|||
|
assert bboxes.shape[1] == 4
|
|||
|
|
|||
|
detection_boxes.append(bboxes)
|
|||
|
detection_scores.append(scores)
|
|||
|
detection_classes.append(labels)
|
|||
|
|
|||
|
assert len(img_metas) == 1
|
|||
|
outputs = {
|
|||
|
'detection_boxes': detection_boxes,
|
|||
|
'detection_scores': detection_scores,
|
|||
|
'detection_classes': detection_classes,
|
|||
|
'img_metas': img_metas
|
|||
|
}
|
|||
|
|
|||
|
return outputs
|
|||
|
|
|||
|
def loss(self,
|
|||
|
cls_scores,
|
|||
|
bbox_preds,
|
|||
|
centernesses,
|
|||
|
gt_bboxes,
|
|||
|
gt_labels,
|
|||
|
img_metas,
|
|||
|
gt_bboxes_ignore=None):
|
|||
|
"""Compute loss of the head.
|
|||
|
Args:
|
|||
|
cls_scores (list[Tensor]): Box scores for each scale level,
|
|||
|
each is a 4D-tensor, the channel number is
|
|||
|
num_points * num_classes.
|
|||
|
bbox_preds (list[Tensor]): Box energies / deltas for each scale
|
|||
|
level, each is a 4D-tensor, the channel number is
|
|||
|
num_points * 4.
|
|||
|
centernesses (list[Tensor]): centerness for each scale level, each
|
|||
|
is a 4D-tensor, the channel number is num_points * 1.
|
|||
|
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
|
|||
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
|
|||
|
gt_labels (list[Tensor]): class indices corresponding to each box
|
|||
|
img_metas (list[dict]): Meta information of each image, e.g.,
|
|||
|
image size, scaling factor, etc.
|
|||
|
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
|
|||
|
boxes can be ignored when computing the loss.
|
|||
|
Returns:
|
|||
|
dict[str, Tensor]: A dictionary of loss components.
|
|||
|
"""
|
|||
|
assert len(cls_scores) == len(bbox_preds) == len(centernesses)
|
|||
|
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
|
|||
|
all_level_points = self.prior_generator.grid_priors(
|
|||
|
featmap_sizes,
|
|||
|
dtype=bbox_preds[0].dtype,
|
|||
|
device=bbox_preds[0].device)
|
|||
|
labels, bbox_targets = self.get_targets(all_level_points, gt_bboxes,
|
|||
|
gt_labels)
|
|||
|
|
|||
|
num_imgs = cls_scores[0].size(0)
|
|||
|
# flatten cls_scores, bbox_preds and centerness
|
|||
|
flatten_cls_scores = [
|
|||
|
cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
|
|||
|
for cls_score in cls_scores
|
|||
|
]
|
|||
|
flatten_bbox_preds = [
|
|||
|
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
|
|||
|
for bbox_pred in bbox_preds
|
|||
|
]
|
|||
|
flatten_centerness = [
|
|||
|
centerness.permute(0, 2, 3, 1).reshape(-1)
|
|||
|
for centerness in centernesses
|
|||
|
]
|
|||
|
flatten_cls_scores = torch.cat(flatten_cls_scores)
|
|||
|
flatten_bbox_preds = torch.cat(flatten_bbox_preds)
|
|||
|
flatten_centerness = torch.cat(flatten_centerness)
|
|||
|
flatten_labels = torch.cat(labels)
|
|||
|
flatten_bbox_targets = torch.cat(bbox_targets)
|
|||
|
# repeat points to align with bbox_preds
|
|||
|
flatten_points = torch.cat(
|
|||
|
[points.repeat(num_imgs, 1) for points in all_level_points])
|
|||
|
|
|||
|
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
|
|||
|
bg_class_ind = self.num_classes
|
|||
|
pos_inds = ((flatten_labels >= 0)
|
|||
|
& (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
|
|||
|
num_pos = torch.tensor(
|
|||
|
len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
|
|||
|
num_pos = max(reduce_mean(num_pos), 1.0)
|
|||
|
loss_cls = self.loss_cls(
|
|||
|
flatten_cls_scores, flatten_labels, avg_factor=num_pos)
|
|||
|
|
|||
|
pos_bbox_preds = flatten_bbox_preds[pos_inds]
|
|||
|
pos_centerness = flatten_centerness[pos_inds]
|
|||
|
pos_bbox_targets = flatten_bbox_targets[pos_inds]
|
|||
|
pos_centerness_targets = self.centerness_target(pos_bbox_targets)
|
|||
|
# centerness weighted iou loss
|
|||
|
centerness_denorm = max(
|
|||
|
reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)
|
|||
|
|
|||
|
if len(pos_inds) > 0:
|
|||
|
pos_points = flatten_points[pos_inds]
|
|||
|
pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds)
|
|||
|
pos_decoded_target_preds = distance2bbox(pos_points,
|
|||
|
pos_bbox_targets)
|
|||
|
loss_bbox = self.loss_bbox(
|
|||
|
pos_decoded_bbox_preds,
|
|||
|
pos_decoded_target_preds,
|
|||
|
weight=pos_centerness_targets,
|
|||
|
avg_factor=centerness_denorm)
|
|||
|
loss_centerness = self.loss_centerness(
|
|||
|
pos_centerness, pos_centerness_targets, avg_factor=num_pos)
|
|||
|
else:
|
|||
|
loss_bbox = pos_bbox_preds.sum()
|
|||
|
loss_centerness = pos_centerness.sum()
|
|||
|
|
|||
|
return dict(
|
|||
|
loss_cls=loss_cls,
|
|||
|
loss_bbox=loss_bbox,
|
|||
|
loss_centerness=loss_centerness)
|
|||
|
|
|||
|
def get_targets(self, points, gt_bboxes_list, gt_labels_list):
|
|||
|
"""Compute regression, classification and centerness targets for points
|
|||
|
in multiple images.
|
|||
|
Args:
|
|||
|
points (list[Tensor]): Points of each fpn level, each has shape
|
|||
|
(num_points, 2).
|
|||
|
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
|
|||
|
each has shape (num_gt, 4).
|
|||
|
gt_labels_list (list[Tensor]): Ground truth labels of each box,
|
|||
|
each has shape (num_gt,).
|
|||
|
Returns:
|
|||
|
tuple:
|
|||
|
concat_lvl_labels (list[Tensor]): Labels of each level. \
|
|||
|
concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
|
|||
|
level.
|
|||
|
"""
|
|||
|
assert len(points) == len(self.regress_ranges)
|
|||
|
num_levels = len(points)
|
|||
|
# expand regress ranges to align with points
|
|||
|
expanded_regress_ranges = [
|
|||
|
points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
|
|||
|
points[i]) for i in range(num_levels)
|
|||
|
]
|
|||
|
# concat all levels points and regress ranges
|
|||
|
concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
|
|||
|
concat_points = torch.cat(points, dim=0)
|
|||
|
|
|||
|
# the number of points per img, per lvl
|
|||
|
num_points = [center.size(0) for center in points]
|
|||
|
|
|||
|
# get labels and bbox_targets of each image
|
|||
|
labels_list, bbox_targets_list = multi_apply(
|
|||
|
self._get_target_single,
|
|||
|
gt_bboxes_list,
|
|||
|
gt_labels_list,
|
|||
|
points=concat_points,
|
|||
|
regress_ranges=concat_regress_ranges,
|
|||
|
num_points_per_lvl=num_points)
|
|||
|
|
|||
|
# split to per img, per level
|
|||
|
labels_list = [labels.split(num_points, 0) for labels in labels_list]
|
|||
|
bbox_targets_list = [
|
|||
|
bbox_targets.split(num_points, 0)
|
|||
|
for bbox_targets in bbox_targets_list
|
|||
|
]
|
|||
|
|
|||
|
# concat per level image
|
|||
|
concat_lvl_labels = []
|
|||
|
concat_lvl_bbox_targets = []
|
|||
|
for i in range(num_levels):
|
|||
|
concat_lvl_labels.append(
|
|||
|
torch.cat([labels[i] for labels in labels_list]))
|
|||
|
bbox_targets = torch.cat(
|
|||
|
[bbox_targets[i] for bbox_targets in bbox_targets_list])
|
|||
|
if self.norm_on_bbox:
|
|||
|
bbox_targets = bbox_targets / self.strides[i]
|
|||
|
concat_lvl_bbox_targets.append(bbox_targets)
|
|||
|
return concat_lvl_labels, concat_lvl_bbox_targets
|
|||
|
|
|||
|
def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges,
|
|||
|
num_points_per_lvl):
|
|||
|
"""Compute regression and classification targets for a single image."""
|
|||
|
num_points = points.size(0)
|
|||
|
num_gts = gt_labels.size(0)
|
|||
|
if num_gts == 0:
|
|||
|
return gt_labels.new_full((num_points,), self.num_classes), \
|
|||
|
gt_bboxes.new_zeros((num_points, 4))
|
|||
|
|
|||
|
areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
|
|||
|
gt_bboxes[:, 3] - gt_bboxes[:, 1])
|
|||
|
# TODO: figure out why these two are different
|
|||
|
# areas = areas[None].expand(num_points, num_gts)
|
|||
|
areas = areas[None].repeat(num_points, 1)
|
|||
|
regress_ranges = regress_ranges[:, None, :].expand(
|
|||
|
num_points, num_gts, 2)
|
|||
|
gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
|
|||
|
xs, ys = points[:, 0], points[:, 1]
|
|||
|
xs = xs[:, None].expand(num_points, num_gts)
|
|||
|
ys = ys[:, None].expand(num_points, num_gts)
|
|||
|
|
|||
|
left = xs - gt_bboxes[..., 0]
|
|||
|
right = gt_bboxes[..., 2] - xs
|
|||
|
top = ys - gt_bboxes[..., 1]
|
|||
|
bottom = gt_bboxes[..., 3] - ys
|
|||
|
bbox_targets = torch.stack((left, top, right, bottom), -1)
|
|||
|
|
|||
|
if self.center_sampling:
|
|||
|
# condition1: inside a `center bbox`
|
|||
|
radius = self.center_sample_radius
|
|||
|
center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
|
|||
|
center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
|
|||
|
center_gts = torch.zeros_like(gt_bboxes)
|
|||
|
stride = center_xs.new_zeros(center_xs.shape)
|
|||
|
|
|||
|
# project the points on current lvl back to the `original` sizes
|
|||
|
lvl_begin = 0
|
|||
|
for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
|
|||
|
lvl_end = lvl_begin + num_points_lvl
|
|||
|
stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
|
|||
|
lvl_begin = lvl_end
|
|||
|
|
|||
|
x_mins = center_xs - stride
|
|||
|
y_mins = center_ys - stride
|
|||
|
x_maxs = center_xs + stride
|
|||
|
y_maxs = center_ys + stride
|
|||
|
center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
|
|||
|
x_mins, gt_bboxes[..., 0])
|
|||
|
center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
|
|||
|
y_mins, gt_bboxes[..., 1])
|
|||
|
center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
|
|||
|
gt_bboxes[..., 2], x_maxs)
|
|||
|
center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
|
|||
|
gt_bboxes[..., 3], y_maxs)
|
|||
|
|
|||
|
cb_dist_left = xs - center_gts[..., 0]
|
|||
|
cb_dist_right = center_gts[..., 2] - xs
|
|||
|
cb_dist_top = ys - center_gts[..., 1]
|
|||
|
cb_dist_bottom = center_gts[..., 3] - ys
|
|||
|
center_bbox = torch.stack(
|
|||
|
(cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
|
|||
|
inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
|
|||
|
else:
|
|||
|
# condition1: inside a gt bbox
|
|||
|
inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0
|
|||
|
|
|||
|
# condition2: limit the regression range for each location
|
|||
|
max_regress_distance = bbox_targets.max(-1)[0]
|
|||
|
inside_regress_range = (
|
|||
|
(max_regress_distance >= regress_ranges[..., 0])
|
|||
|
& (max_regress_distance <= regress_ranges[..., 1]))
|
|||
|
|
|||
|
# if there are still more than one objects for a location,
|
|||
|
# we choose the one with minimal area
|
|||
|
areas[inside_gt_bbox_mask == 0] = INF
|
|||
|
areas[inside_regress_range == 0] = INF
|
|||
|
min_area, min_area_inds = areas.min(dim=1)
|
|||
|
|
|||
|
labels = gt_labels[min_area_inds]
|
|||
|
labels[min_area == INF] = self.num_classes # set as BG
|
|||
|
bbox_targets = bbox_targets[range(num_points), min_area_inds]
|
|||
|
|
|||
|
return labels, bbox_targets
|
|||
|
|
|||
|
def centerness_target(self, pos_bbox_targets):
|
|||
|
"""Compute centerness targets.
|
|||
|
Args:
|
|||
|
pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape
|
|||
|
(num_pos, 4)
|
|||
|
Returns:
|
|||
|
Tensor: Centerness target.
|
|||
|
"""
|
|||
|
# only calculate pos centerness targets, otherwise there may be nan
|
|||
|
left_right = pos_bbox_targets[:, [0, 2]]
|
|||
|
top_bottom = pos_bbox_targets[:, [1, 3]]
|
|||
|
if len(left_right) == 0:
|
|||
|
centerness_targets = left_right[..., 0]
|
|||
|
else:
|
|||
|
centerness_targets = (
|
|||
|
left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
|
|||
|
top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
|
|||
|
return torch.sqrt(centerness_targets)
|
|||
|
|
|||
|
def get_bboxes(self,
|
|||
|
cls_scores,
|
|||
|
bbox_preds,
|
|||
|
score_factors=None,
|
|||
|
img_metas=None,
|
|||
|
cfg=None,
|
|||
|
rescale=False,
|
|||
|
with_nms=True,
|
|||
|
**kwargs):
|
|||
|
"""Transform network outputs of a batch into bbox results.
|
|||
|
Note: When score_factors is not None, the cls_scores are
|
|||
|
usually multiplied by it then obtain the real score used in NMS,
|
|||
|
such as CenterNess in FCOS, IoU branch in ATSS.
|
|||
|
Args:
|
|||
|
cls_scores (list[Tensor]): Classification scores for all
|
|||
|
scale levels, each is a 4D-tensor, has shape
|
|||
|
(batch_size, num_priors * num_classes, H, W).
|
|||
|
bbox_preds (list[Tensor]): Box energies / deltas for all
|
|||
|
scale levels, each is a 4D-tensor, has shape
|
|||
|
(batch_size, num_priors * 4, H, W).
|
|||
|
score_factors (list[Tensor], Optional): Score factor for
|
|||
|
all scale level, each is a 4D-tensor, has shape
|
|||
|
(batch_size, num_priors * 1, H, W). Default None.
|
|||
|
img_metas (list[dict], Optional): Image meta info. Default None.
|
|||
|
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
|
|||
|
if None, test_cfg would be used. Default None.
|
|||
|
rescale (bool): If True, return boxes in original image space.
|
|||
|
Default False.
|
|||
|
with_nms (bool): If True, do nms before return boxes.
|
|||
|
Default True.
|
|||
|
Returns:
|
|||
|
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
|
|||
|
The first item is an (n, 5) tensor, where the first 4 columns
|
|||
|
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
|
|||
|
5-th column is a score between 0 and 1. The second item is a
|
|||
|
(n,) tensor where each item is the predicted class label of
|
|||
|
the corresponding box.
|
|||
|
"""
|
|||
|
assert len(cls_scores) == len(bbox_preds)
|
|||
|
|
|||
|
if score_factors is None:
|
|||
|
# e.g. Retina, FreeAnchor, Foveabox, etc.
|
|||
|
with_score_factors = False
|
|||
|
else:
|
|||
|
# e.g. FCOS, PAA, ATSS, AutoAssign, etc.
|
|||
|
with_score_factors = True
|
|||
|
assert len(cls_scores) == len(score_factors)
|
|||
|
|
|||
|
num_levels = len(cls_scores)
|
|||
|
|
|||
|
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
|
|||
|
mlvl_priors = self.prior_generator.grid_priors(
|
|||
|
featmap_sizes,
|
|||
|
dtype=cls_scores[0].dtype,
|
|||
|
device=cls_scores[0].device)
|
|||
|
|
|||
|
result_list = []
|
|||
|
|
|||
|
for img_id in range(len(img_metas)):
|
|||
|
img_meta = img_metas[img_id]
|
|||
|
cls_score_list = select_single_mlvl(cls_scores, img_id)
|
|||
|
bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
|
|||
|
if with_score_factors:
|
|||
|
score_factor_list = select_single_mlvl(score_factors, img_id)
|
|||
|
else:
|
|||
|
score_factor_list = [None for _ in range(num_levels)]
|
|||
|
|
|||
|
results = self._get_bboxes_single(cls_score_list, bbox_pred_list,
|
|||
|
score_factor_list, mlvl_priors,
|
|||
|
img_meta, cfg, rescale, with_nms,
|
|||
|
**kwargs)
|
|||
|
result_list.append(results)
|
|||
|
return result_list
|
|||
|
|
|||
|
def _get_bboxes_single(self,
|
|||
|
cls_score_list,
|
|||
|
bbox_pred_list,
|
|||
|
score_factor_list,
|
|||
|
mlvl_priors,
|
|||
|
img_meta,
|
|||
|
cfg,
|
|||
|
rescale=False,
|
|||
|
with_nms=True,
|
|||
|
**kwargs):
|
|||
|
"""Transform outputs of a single image into bbox predictions.
|
|||
|
Args:
|
|||
|
cls_score_list (list[Tensor]): Box scores from all scale
|
|||
|
levels of a single image, each item has shape
|
|||
|
(num_priors * num_classes, H, W).
|
|||
|
bbox_pred_list (list[Tensor]): Box energies / deltas from
|
|||
|
all scale levels of a single image, each item has shape
|
|||
|
(num_priors * 4, H, W).
|
|||
|
score_factor_list (list[Tensor]): Score factor from all scale
|
|||
|
levels of a single image, each item has shape
|
|||
|
(num_priors * 1, H, W).
|
|||
|
mlvl_priors (list[Tensor]): Each element in the list is
|
|||
|
the priors of a single level in feature pyramid. In all
|
|||
|
anchor-based methods, it has shape (num_priors, 4). In
|
|||
|
all anchor-free methods, it has shape (num_priors, 2)
|
|||
|
when `with_stride=True`, otherwise it still has shape
|
|||
|
(num_priors, 4).
|
|||
|
img_meta (dict): Image meta info.
|
|||
|
cfg (mmcv.Config): Test / postprocessing configuration,
|
|||
|
if None, test_cfg would be used.
|
|||
|
rescale (bool): If True, return boxes in original image space.
|
|||
|
Default: False.
|
|||
|
with_nms (bool): If True, do nms before return boxes.
|
|||
|
Default: True.
|
|||
|
Returns:
|
|||
|
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
|
|||
|
is False and mlvl_score_factor is None, return mlvl_bboxes and
|
|||
|
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
|
|||
|
mlvl_score_factor. Usually with_nms is False is used for aug
|
|||
|
test. If with_nms is True, then return the following format
|
|||
|
- det_bboxes (Tensor): Predicted bboxes with shape \
|
|||
|
[num_bboxes, 5], where the first 4 columns are bounding \
|
|||
|
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
|
|||
|
column are scores between 0 and 1.
|
|||
|
- det_labels (Tensor): Predicted labels of the corresponding \
|
|||
|
box with shape [num_bboxes].
|
|||
|
"""
|
|||
|
if score_factor_list[0] is None:
|
|||
|
# e.g. Retina, FreeAnchor, etc.
|
|||
|
with_score_factors = False
|
|||
|
else:
|
|||
|
# e.g. FCOS, PAA, ATSS, etc.
|
|||
|
with_score_factors = True
|
|||
|
|
|||
|
cfg = self.test_cfg if cfg is None else cfg
|
|||
|
img_shape = img_meta['img_shape']
|
|||
|
nms_pre = cfg.get('nms_pre', -1)
|
|||
|
|
|||
|
mlvl_bboxes = []
|
|||
|
mlvl_scores = []
|
|||
|
mlvl_labels = []
|
|||
|
if with_score_factors:
|
|||
|
mlvl_score_factors = []
|
|||
|
else:
|
|||
|
mlvl_score_factors = None
|
|||
|
for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
|
|||
|
enumerate(zip(cls_score_list, bbox_pred_list,
|
|||
|
score_factor_list, mlvl_priors)):
|
|||
|
|
|||
|
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
|
|||
|
|
|||
|
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
|
|||
|
if with_score_factors:
|
|||
|
score_factor = score_factor.permute(1, 2,
|
|||
|
0).reshape(-1).sigmoid()
|
|||
|
cls_score = cls_score.permute(1, 2,
|
|||
|
0).reshape(-1, self.cls_out_channels)
|
|||
|
if self.use_sigmoid_cls:
|
|||
|
scores = cls_score.sigmoid()
|
|||
|
else:
|
|||
|
# remind that we set FG labels to [0, num_class-1]
|
|||
|
# since mmdet v2.0
|
|||
|
# BG cat_id: num_class
|
|||
|
scores = cls_score.softmax(-1)[:, :-1]
|
|||
|
|
|||
|
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
|
|||
|
# this operation keeps fewer bboxes under the same `nms_pre`.
|
|||
|
# There is no difference in performance for most models. If you
|
|||
|
# find a slight drop in performance, you can set a larger
|
|||
|
# `nms_pre` than before.
|
|||
|
results = filter_scores_and_topk(
|
|||
|
scores, cfg.score_thr, nms_pre,
|
|||
|
dict(bbox_pred=bbox_pred, priors=priors))
|
|||
|
scores, labels, keep_idxs, filtered_results = results
|
|||
|
|
|||
|
bbox_pred = filtered_results['bbox_pred']
|
|||
|
priors = filtered_results['priors']
|
|||
|
|
|||
|
if with_score_factors:
|
|||
|
score_factor = score_factor[keep_idxs]
|
|||
|
|
|||
|
bboxes = distance2bbox(priors, bbox_pred, max_shape=img_shape)
|
|||
|
|
|||
|
mlvl_bboxes.append(bboxes)
|
|||
|
mlvl_scores.append(scores)
|
|||
|
mlvl_labels.append(labels)
|
|||
|
if with_score_factors:
|
|||
|
mlvl_score_factors.append(score_factor)
|
|||
|
|
|||
|
return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes,
|
|||
|
img_meta['scale_factor'], cfg, rescale,
|
|||
|
with_nms, mlvl_score_factors, **kwargs)
|
|||
|
|
|||
|
def _bbox_post_process(self,
|
|||
|
mlvl_scores,
|
|||
|
mlvl_labels,
|
|||
|
mlvl_bboxes,
|
|||
|
scale_factor,
|
|||
|
cfg,
|
|||
|
rescale=False,
|
|||
|
with_nms=True,
|
|||
|
mlvl_score_factors=None,
|
|||
|
**kwargs):
|
|||
|
"""bbox post-processing method.
|
|||
|
The boxes would be rescaled to the original image scale and do
|
|||
|
the nms operation. Usually `with_nms` is False is used for aug test.
|
|||
|
Args:
|
|||
|
mlvl_scores (list[Tensor]): Box scores from all scale
|
|||
|
levels of a single image, each item has shape
|
|||
|
(num_bboxes, ).
|
|||
|
mlvl_labels (list[Tensor]): Box class labels from all scale
|
|||
|
levels of a single image, each item has shape
|
|||
|
(num_bboxes, ).
|
|||
|
mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale
|
|||
|
levels of a single image, each item has shape (num_bboxes, 4).
|
|||
|
scale_factor (ndarray, optional): Scale factor of the image arange
|
|||
|
as (w_scale, h_scale, w_scale, h_scale).
|
|||
|
cfg (mmcv.Config): Test / postprocessing configuration,
|
|||
|
if None, test_cfg would be used.
|
|||
|
rescale (bool): If True, return boxes in original image space.
|
|||
|
Default: False.
|
|||
|
with_nms (bool): If True, do nms before return boxes.
|
|||
|
Default: True.
|
|||
|
mlvl_score_factors (list[Tensor], optional): Score factor from
|
|||
|
all scale levels of a single image, each item has shape
|
|||
|
(num_bboxes, ). Default: None.
|
|||
|
Returns:
|
|||
|
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
|
|||
|
is False and mlvl_score_factor is None, return mlvl_bboxes and
|
|||
|
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
|
|||
|
mlvl_score_factor. Usually with_nms is False is used for aug
|
|||
|
test. If with_nms is True, then return the following format
|
|||
|
- det_bboxes (Tensor): Predicted bboxes with shape \
|
|||
|
[num_bboxes, 5], where the first 4 columns are bounding \
|
|||
|
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
|
|||
|
column are scores between 0 and 1.
|
|||
|
- det_labels (Tensor): Predicted labels of the corresponding \
|
|||
|
box with shape [num_bboxes].
|
|||
|
"""
|
|||
|
assert len(mlvl_scores) == len(mlvl_bboxes) == len(mlvl_labels)
|
|||
|
|
|||
|
mlvl_bboxes = torch.cat(mlvl_bboxes)
|
|||
|
if rescale:
|
|||
|
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
|
|||
|
mlvl_scores = torch.cat(mlvl_scores)
|
|||
|
mlvl_labels = torch.cat(mlvl_labels)
|
|||
|
|
|||
|
if mlvl_score_factors is not None:
|
|||
|
# TODO: Add sqrt operation in order to be consistent with
|
|||
|
# the paper.
|
|||
|
mlvl_score_factors = torch.cat(mlvl_score_factors)
|
|||
|
mlvl_scores = mlvl_scores * mlvl_score_factors
|
|||
|
|
|||
|
if with_nms:
|
|||
|
if mlvl_bboxes.numel() == 0:
|
|||
|
det_bboxes = torch.cat([mlvl_bboxes, mlvl_scores[:, None]], -1)
|
|||
|
return det_bboxes, mlvl_labels
|
|||
|
|
|||
|
det_bboxes, keep_idxs = batched_nms(mlvl_bboxes, mlvl_scores,
|
|||
|
mlvl_labels, cfg.nms)
|
|||
|
det_bboxes = det_bboxes[:cfg.max_per_img]
|
|||
|
det_labels = mlvl_labels[keep_idxs][:cfg.max_per_img]
|
|||
|
return det_bboxes, det_labels
|
|||
|
else:
|
|||
|
return mlvl_bboxes, mlvl_scores, mlvl_labels
|