EasyCV/tests/tools/test_quantize.py

118 lines
3.6 KiB
Python
Raw Normal View History

2022-04-02 20:01:06 +08:00
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import logging
import os
import sys
import tempfile
import unittest
from distutils.version import LooseVersion
2022-04-02 20:01:06 +08:00
import torch
from mmcv import Config
from tests.ut_config import (COMPRESSION_TEST_DATA,
PRETRAINED_MODEL_YOLOX_COMPRESSION)
from easycv.file import io
from easycv.utils.test_util import run_in_subprocess
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
logging.basicConfig(level=logging.INFO)
SMALL_IMAGENET_DATA_ROOT = COMPRESSION_TEST_DATA.rstrip('/') + '/'
_QUANTIZE_OPTIONS = {
'total_epochs': 1,
'data.imgs_per_gpu': 16,
}
_PRUNE_OPTIONS = {
'total_epochs': 11,
'data.imgs_per_gpu': 1,
}
TRAIN_CONFIGS = [
{
'config_file': 'configs/edge_models/yolox_edge.py',
2022-05-16 18:40:36 +08:00
'model_type': 'YOLOX_EDGE',
2022-04-02 20:01:06 +08:00
'cfg_options': {
**_QUANTIZE_OPTIONS, 'data.train.data_source.ann_file':
SMALL_IMAGENET_DATA_ROOT + 'annotations/instances_train2017.json',
'data.train.data_source.img_prefix':
SMALL_IMAGENET_DATA_ROOT + 'images',
'data.val.data_source.ann_file':
SMALL_IMAGENET_DATA_ROOT + 'annotations/instances_train2017.json',
'data.val.data_source.img_prefix':
SMALL_IMAGENET_DATA_ROOT + 'images'
}
},
{
'config_file': 'configs/edge_models/yolox_edge.py',
2022-05-16 18:40:36 +08:00
'model_type': 'YOLOX_EDGE',
2022-04-02 20:01:06 +08:00
'cfg_options': {
**_PRUNE_OPTIONS, 'img_scale': (128, 128),
'data.train.data_source.ann_file':
SMALL_IMAGENET_DATA_ROOT + 'annotations/instances_train2017.json',
'data.train.data_source.img_prefix':
SMALL_IMAGENET_DATA_ROOT + 'images',
'data.val.data_source.ann_file':
SMALL_IMAGENET_DATA_ROOT + 'annotations/instances_train2017.json',
'data.val.data_source.img_prefix':
SMALL_IMAGENET_DATA_ROOT + 'images'
}
},
]
class ModelQuantizeTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
def tearDown(self):
super().tearDown()
def _base_quantize(self, train_cfgs):
cfg_file = train_cfgs.pop('config_file')
cfg_options = train_cfgs.pop('cfg_options', None)
work_dir = train_cfgs.pop('work_dir', None)
2022-05-16 18:40:36 +08:00
model_type = train_cfgs.pop('model_type', None)
2022-04-02 20:01:06 +08:00
if not work_dir:
work_dir = tempfile.TemporaryDirectory().name
cfg = Config.fromfile(cfg_file)
if cfg_options is not None:
cfg.merge_from_dict(cfg_options)
cfg.eval_pipelines[0].data = dict(**cfg.data.val)
tmp_cfg_file = tempfile.NamedTemporaryFile(suffix='.py').name
cfg.dump(tmp_cfg_file)
ckpt_path = PRETRAINED_MODEL_YOLOX_COMPRESSION
args_str = ' '.join(
['='.join((str(k), str(v))) for k, v in train_cfgs.items()])
2022-05-16 18:40:36 +08:00
cmd = 'python tools/quantize.py %s %s --model_type=%s --work_dir=%s %s' % \
(tmp_cfg_file, ckpt_path, model_type, work_dir, args_str)
2022-04-02 20:01:06 +08:00
logging.info('run command: %s' % cmd)
run_in_subprocess(cmd)
output_files = io.listdir(work_dir)
self.assertIn('quantize_model.pt', output_files)
io.remove(work_dir)
io.remove(tmp_cfg_file)
@unittest.skipIf(
LooseVersion(torch.__version__) < LooseVersion('1.10.0'),
'model compression need pytorch version >= 1.10.0')
2022-04-02 20:01:06 +08:00
def test_model_quantize(self):
train_cfgs = copy.deepcopy(TRAIN_CONFIGS[0])
self._base_quantize(train_cfgs)
if __name__ == '__main__':
unittest.main()