mirror of
https://github.com/alibaba/EasyCV.git
synced 2025-06-03 14:49:00 +08:00
add vitdet_faster_rcnn (#155)
* add vitdet_faster_Rcn and refactor vitdet_config
This commit is contained in:
parent
3c6c2c0b6f
commit
3a24d2cf8f
@ -88,3 +88,14 @@ val_dataset = dict(
|
||||
|
||||
data = dict(
|
||||
imgs_per_gpu=2, workers_per_gpu=2, train=train_dataset, val=val_dataset)
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
],
|
||||
)
|
||||
]
|
||||
|
@ -1,21 +1,5 @@
|
||||
_base_ = ['./fcos.py', './coco_detection.py', 'configs/base.py']
|
||||
|
||||
CLASSES = [
|
||||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
||||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
||||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
||||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
||||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
||||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
||||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
||||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
||||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush'
|
||||
]
|
||||
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
@ -42,15 +26,4 @@ lr_config = dict(
|
||||
|
||||
total_epochs = 12
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
find_unused_parameters = False
|
||||
|
115
configs/detection/vitdet/_base_/datasets/coco_detection.py
Normal file
115
configs/detection/vitdet/_base_/datasets/coco_detection.py
Normal file
@ -0,0 +1,115 @@
|
||||
CLASSES = [
|
||||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
||||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
||||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
||||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
||||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
||||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
||||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
||||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
||||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush'
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
data_root = 'data/coco/'
|
||||
img_norm_cfg = dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
|
||||
image_size = (1024, 1024)
|
||||
train_pipeline = [
|
||||
# large scale jittering
|
||||
dict(
|
||||
type='MMResize',
|
||||
img_scale=image_size,
|
||||
ratio_range=(0.1, 2.0),
|
||||
multiscale_mode='range',
|
||||
keep_ratio=True),
|
||||
dict(
|
||||
type='MMRandomCrop',
|
||||
crop_type='absolute_range',
|
||||
crop_size=image_size,
|
||||
recompute_bbox=False,
|
||||
allow_negative_crop=True),
|
||||
dict(type='MMFilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
|
||||
dict(type='MMRandomFlip', flip_ratio=0.5),
|
||||
dict(type='MMNormalize', **img_norm_cfg),
|
||||
dict(type='MMPad', size=image_size),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img', 'gt_bboxes', 'gt_labels'],
|
||||
meta_keys=('filename', 'ori_filename', 'ori_shape', 'ori_img_shape',
|
||||
'img_shape', 'pad_shape', 'scale_factor', 'flip',
|
||||
'flip_direction', 'img_norm_cfg'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(
|
||||
type='MMMultiScaleFlipAug',
|
||||
img_scale=image_size,
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='MMResize', keep_ratio=True),
|
||||
dict(type='MMRandomFlip'),
|
||||
dict(type='MMNormalize', **img_norm_cfg),
|
||||
dict(type='MMPad', size_divisor=1024),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img'],
|
||||
meta_keys=('filename', 'ori_filename', 'ori_shape',
|
||||
'ori_img_shape', 'img_shape', 'pad_shape',
|
||||
'scale_factor', 'flip', 'flip_direction',
|
||||
'img_norm_cfg'))
|
||||
])
|
||||
]
|
||||
|
||||
train_dataset = dict(
|
||||
type='DetDataset',
|
||||
data_source=dict(
|
||||
type='DetSourceCoco',
|
||||
ann_file=data_root + 'annotations/instances_train2017.json',
|
||||
img_prefix=data_root + 'train2017/',
|
||||
pipeline=[
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_bbox=True)
|
||||
],
|
||||
classes=CLASSES,
|
||||
test_mode=False,
|
||||
filter_empty_gt=True,
|
||||
iscrowd=False),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
val_dataset = dict(
|
||||
type='DetDataset',
|
||||
imgs_per_gpu=1,
|
||||
data_source=dict(
|
||||
type='DetSourceCoco',
|
||||
ann_file=data_root + 'annotations/instances_val2017.json',
|
||||
img_prefix=data_root + 'val2017/',
|
||||
pipeline=[
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_bbox=True)
|
||||
],
|
||||
classes=CLASSES,
|
||||
test_mode=True,
|
||||
filter_empty_gt=False,
|
||||
iscrowd=True),
|
||||
pipeline=test_pipeline)
|
||||
|
||||
data = dict(
|
||||
imgs_per_gpu=1, workers_per_gpu=2, train=train_dataset, val=val_dataset)
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
],
|
||||
)
|
||||
]
|
@ -102,3 +102,15 @@ val_dataset = dict(
|
||||
|
||||
data = dict(
|
||||
imgs_per_gpu=1, workers_per_gpu=2, train=train_dataset, val=val_dataset)
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
dict(type='CocoMaskEvaluator', classes=CLASSES)
|
||||
],
|
||||
)
|
||||
]
|
||||
|
126
configs/detection/vitdet/_base_/models/vitdet_faster_rcnn.py
Normal file
126
configs/detection/vitdet/_base_/models/vitdet_faster_rcnn.py
Normal file
@ -0,0 +1,126 @@
|
||||
# model settings
|
||||
|
||||
norm_cfg = dict(type='GN', num_groups=1, requires_grad=True)
|
||||
|
||||
pretrained = 'https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/selfsup/mae/vit-b-1600/warpper_mae_vit-base-p16-1600e.pth'
|
||||
model = dict(
|
||||
type='FasterRCNN',
|
||||
pretrained=pretrained,
|
||||
backbone=dict(
|
||||
type='ViTDet',
|
||||
img_size=1024,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
qk_scale=None,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.1,
|
||||
use_abs_pos_emb=True,
|
||||
aggregation='attn',
|
||||
),
|
||||
neck=dict(
|
||||
type='SFP',
|
||||
in_channels=[768, 768, 768, 768],
|
||||
out_channels=256,
|
||||
norm_cfg=norm_cfg,
|
||||
num_outs=5),
|
||||
rpn_head=dict(
|
||||
type='RPNHead',
|
||||
in_channels=256,
|
||||
feat_channels=256,
|
||||
num_convs=2,
|
||||
norm_cfg=norm_cfg,
|
||||
anchor_generator=dict(
|
||||
type='AnchorGenerator',
|
||||
scales=[8],
|
||||
ratios=[0.5, 1.0, 2.0],
|
||||
strides=[4, 8, 16, 32, 64]),
|
||||
bbox_coder=dict(
|
||||
type='DeltaXYWHBBoxCoder',
|
||||
target_means=[.0, .0, .0, .0],
|
||||
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
||||
loss_cls=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
||||
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
||||
roi_head=dict(
|
||||
type='StandardRoIHead',
|
||||
bbox_roi_extractor=dict(
|
||||
type='SingleRoIExtractor',
|
||||
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
||||
out_channels=256,
|
||||
featmap_strides=[4, 8, 16, 32]),
|
||||
bbox_head=dict(
|
||||
type='Shared4Conv1FCBBoxHead',
|
||||
conv_out_channels=256,
|
||||
norm_cfg=norm_cfg,
|
||||
in_channels=256,
|
||||
fc_out_channels=1024,
|
||||
roi_feat_size=7,
|
||||
num_classes=80,
|
||||
bbox_coder=dict(
|
||||
type='DeltaXYWHBBoxCoder',
|
||||
target_means=[0., 0., 0., 0.],
|
||||
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
||||
reg_class_agnostic=False,
|
||||
loss_cls=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
||||
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
||||
# model training and testing settings
|
||||
train_cfg=dict(
|
||||
rpn=dict(
|
||||
assigner=dict(
|
||||
type='MaxIoUAssigner',
|
||||
pos_iou_thr=0.7,
|
||||
neg_iou_thr=0.3,
|
||||
min_pos_iou=0.3,
|
||||
match_low_quality=True,
|
||||
ignore_iof_thr=-1),
|
||||
sampler=dict(
|
||||
type='RandomSampler',
|
||||
num=256,
|
||||
pos_fraction=0.5,
|
||||
neg_pos_ub=-1,
|
||||
add_gt_as_proposals=False),
|
||||
allowed_border=-1,
|
||||
pos_weight=-1,
|
||||
debug=False),
|
||||
rpn_proposal=dict(
|
||||
nms_pre=2000,
|
||||
max_per_img=1000,
|
||||
nms=dict(type='nms', iou_threshold=0.7),
|
||||
min_bbox_size=0),
|
||||
rcnn=dict(
|
||||
assigner=dict(
|
||||
type='MaxIoUAssigner',
|
||||
pos_iou_thr=0.5,
|
||||
neg_iou_thr=0.5,
|
||||
min_pos_iou=0.5,
|
||||
match_low_quality=True,
|
||||
ignore_iof_thr=-1),
|
||||
sampler=dict(
|
||||
type='RandomSampler',
|
||||
num=512,
|
||||
pos_fraction=0.25,
|
||||
neg_pos_ub=-1,
|
||||
add_gt_as_proposals=True),
|
||||
pos_weight=-1,
|
||||
debug=False)),
|
||||
test_cfg=dict(
|
||||
rpn=dict(
|
||||
nms_pre=1000,
|
||||
max_per_img=1000,
|
||||
nms=dict(type='nms', iou_threshold=0.7),
|
||||
min_bbox_size=0),
|
||||
rcnn=dict(
|
||||
score_thr=0.05,
|
||||
nms=dict(type='nms', iou_threshold=0.5),
|
||||
max_per_img=100)))
|
||||
|
||||
mmlab_modules = [
|
||||
dict(type='mmdet', name='FasterRCNN', module='model'),
|
||||
dict(type='mmdet', name='RPNHead', module='head'),
|
||||
dict(type='mmdet', name='StandardRoIHead', module='head'),
|
||||
]
|
@ -3,22 +3,6 @@ _base_ = [
|
||||
'configs/base.py'
|
||||
]
|
||||
|
||||
CLASSES = [
|
||||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
||||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
||||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
||||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
||||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
||||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
||||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
||||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
||||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush'
|
||||
]
|
||||
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
@ -50,16 +34,4 @@ lr_config = dict(
|
||||
step=[88, 96])
|
||||
total_epochs = 100
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
dict(type='CocoMaskEvaluator', classes=CLASSES)
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
find_unused_parameters = False
|
||||
|
@ -1,67 +1,3 @@
|
||||
_base_ = [
|
||||
'./_base_/models/vitdet.py', './_base_/datasets/coco_instance.py',
|
||||
'configs/base.py'
|
||||
]
|
||||
|
||||
CLASSES = [
|
||||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
||||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
||||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
||||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
||||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
||||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
||||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
||||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
||||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush'
|
||||
]
|
||||
_base_ = './vitdet_100e.py'
|
||||
|
||||
model = dict(backbone=dict(aggregation='basicblock'))
|
||||
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook'),
|
||||
# dict(type='TensorboardLoggerHook')
|
||||
])
|
||||
|
||||
checkpoint_config = dict(interval=10)
|
||||
# optimizer
|
||||
paramwise_options = {
|
||||
'norm': dict(weight_decay=0.),
|
||||
'bias': dict(weight_decay=0.),
|
||||
'pos_embed': dict(weight_decay=0.),
|
||||
'cls_token': dict(weight_decay=0.)
|
||||
}
|
||||
optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=1e-4,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.1,
|
||||
paramwise_options=paramwise_options)
|
||||
optimizer_config = dict(grad_clip=None, loss_scale=512.)
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=250,
|
||||
warmup_ratio=0.067,
|
||||
step=[88, 96])
|
||||
total_epochs = 100
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
dict(type='CocoMaskEvaluator', classes=CLASSES)
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
find_unused_parameters = False
|
||||
|
@ -1,67 +1,3 @@
|
||||
_base_ = [
|
||||
'./_base_/models/vitdet.py', './_base_/datasets/coco_instance.py',
|
||||
'configs/base.py'
|
||||
]
|
||||
|
||||
CLASSES = [
|
||||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
||||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
||||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
||||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
||||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
||||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
||||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
||||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
||||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush'
|
||||
]
|
||||
_base_ = './vitdet_100e.py'
|
||||
|
||||
model = dict(backbone=dict(aggregation='bottleneck'))
|
||||
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook'),
|
||||
# dict(type='TensorboardLoggerHook')
|
||||
])
|
||||
|
||||
checkpoint_config = dict(interval=10)
|
||||
# optimizer
|
||||
paramwise_options = {
|
||||
'norm': dict(weight_decay=0.),
|
||||
'bias': dict(weight_decay=0.),
|
||||
'pos_embed': dict(weight_decay=0.),
|
||||
'cls_token': dict(weight_decay=0.)
|
||||
}
|
||||
optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=1e-4,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.1,
|
||||
paramwise_options=paramwise_options)
|
||||
optimizer_config = dict(grad_clip=None, loss_scale=512.)
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=250,
|
||||
warmup_ratio=0.067,
|
||||
step=[88, 96])
|
||||
total_epochs = 100
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
dict(type='CocoMaskEvaluator', classes=CLASSES)
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
find_unused_parameters = False
|
||||
|
37
configs/detection/vitdet/vitdet_faster_rcnn_100e.py
Normal file
37
configs/detection/vitdet/vitdet_faster_rcnn_100e.py
Normal file
@ -0,0 +1,37 @@
|
||||
_base_ = [
|
||||
'./_base_/models/vitdet_faster_rcnn.py',
|
||||
'./_base_/datasets/coco_detection.py', 'configs/base.py'
|
||||
]
|
||||
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook'),
|
||||
# dict(type='TensorboardLoggerHook')
|
||||
])
|
||||
|
||||
checkpoint_config = dict(interval=10)
|
||||
# optimizer
|
||||
paramwise_options = {
|
||||
'norm': dict(weight_decay=0.),
|
||||
'bias': dict(weight_decay=0.),
|
||||
'pos_embed': dict(weight_decay=0.),
|
||||
'cls_token': dict(weight_decay=0.)
|
||||
}
|
||||
optimizer = dict(
|
||||
type='AdamW',
|
||||
lr=1e-4,
|
||||
betas=(0.9, 0.999),
|
||||
weight_decay=0.1,
|
||||
paramwise_options=paramwise_options)
|
||||
optimizer_config = dict(grad_clip=None, loss_scale=512.)
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=250,
|
||||
warmup_ratio=0.067,
|
||||
step=[88, 96])
|
||||
total_epochs = 100
|
||||
|
||||
find_unused_parameters = False
|
Loading…
x
Reference in New Issue
Block a user