mirror of https://github.com/alibaba/EasyCV.git
parent
6b8b04db72
commit
5fb0a86f69
|
@ -0,0 +1,90 @@
|
|||
CLASSES = [
|
||||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
||||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
||||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
||||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
||||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
||||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
||||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
||||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
||||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush'
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
data_root = 'data/coco/'
|
||||
img_norm_cfg = dict(
|
||||
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='MMResize', img_scale=(1333, 800), keep_ratio=True),
|
||||
dict(type='MMRandomFlip', flip_ratio=0.5),
|
||||
dict(type='MMNormalize', **img_norm_cfg),
|
||||
dict(type='MMPad', size_divisor=32),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img', 'gt_bboxes', 'gt_labels'],
|
||||
meta_keys=('filename', 'ori_filename', 'ori_shape', 'ori_img_shape',
|
||||
'img_shape', 'pad_shape', 'scale_factor', 'flip',
|
||||
'flip_direction', 'img_norm_cfg'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(
|
||||
type='MMMultiScaleFlipAug',
|
||||
img_scale=(1333, 800),
|
||||
flip=False,
|
||||
transforms=[
|
||||
dict(type='MMResize', keep_ratio=True),
|
||||
dict(type='MMRandomFlip'),
|
||||
dict(type='MMNormalize', **img_norm_cfg),
|
||||
dict(type='MMPad', size_divisor=32),
|
||||
dict(type='ImageToTensor', keys=['img']),
|
||||
dict(
|
||||
type='Collect',
|
||||
keys=['img'],
|
||||
meta_keys=('filename', 'ori_filename', 'ori_shape',
|
||||
'ori_img_shape', 'img_shape', 'pad_shape',
|
||||
'scale_factor', 'flip', 'flip_direction',
|
||||
'img_norm_cfg'))
|
||||
])
|
||||
]
|
||||
|
||||
train_dataset = dict(
|
||||
type='DetDataset',
|
||||
data_source=dict(
|
||||
type='DetSourceCoco',
|
||||
ann_file=data_root + 'annotations/instances_train2017.json',
|
||||
img_prefix=data_root + 'train2017/',
|
||||
pipeline=[
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_bbox=True)
|
||||
],
|
||||
classes=CLASSES,
|
||||
test_mode=False,
|
||||
filter_empty_gt=True,
|
||||
iscrowd=False),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
val_dataset = dict(
|
||||
type='DetDataset',
|
||||
imgs_per_gpu=1,
|
||||
data_source=dict(
|
||||
type='DetSourceCoco',
|
||||
ann_file=data_root + 'annotations/instances_val2017.json',
|
||||
img_prefix=data_root + 'val2017/',
|
||||
pipeline=[
|
||||
dict(type='LoadImageFromFile'),
|
||||
dict(type='LoadAnnotations', with_bbox=True)
|
||||
],
|
||||
classes=CLASSES,
|
||||
test_mode=True,
|
||||
filter_empty_gt=False,
|
||||
iscrowd=True),
|
||||
pipeline=test_pipeline)
|
||||
|
||||
data = dict(
|
||||
imgs_per_gpu=2, workers_per_gpu=2, train=train_dataset, val=val_dataset)
|
|
@ -0,0 +1,51 @@
|
|||
# model settings
|
||||
model = dict(
|
||||
type='Detection',
|
||||
pretrained=
|
||||
'https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/pretrained_models/easycv/resnet/detectron/resnet50_caffe.pth',
|
||||
backbone=dict(
|
||||
type='ResNet',
|
||||
depth=50,
|
||||
num_stages=4,
|
||||
out_indices=(1, 2, 3, 4),
|
||||
frozen_stages=1,
|
||||
norm_cfg=dict(type='BN', requires_grad=False),
|
||||
norm_eval=True,
|
||||
style='caffe'),
|
||||
neck=dict(
|
||||
type='FPN',
|
||||
in_channels=[256, 512, 1024, 2048],
|
||||
out_channels=256,
|
||||
start_level=1,
|
||||
add_extra_convs='on_output', # use P5
|
||||
num_outs=5,
|
||||
relu_before_extra_convs=True),
|
||||
head=dict(
|
||||
type='FCOSHead',
|
||||
num_classes=80,
|
||||
in_channels=256,
|
||||
stacked_convs=4,
|
||||
feat_channels=256,
|
||||
strides=[8, 16, 32, 64, 128],
|
||||
center_sampling=True,
|
||||
center_sample_radius=1.5,
|
||||
norm_on_bbox=True,
|
||||
centerness_on_reg=True,
|
||||
conv_cfg=None,
|
||||
loss_cls=dict(
|
||||
type='FocalLoss',
|
||||
use_sigmoid=True,
|
||||
gamma=2.0,
|
||||
alpha=0.25,
|
||||
loss_weight=1.0),
|
||||
loss_bbox=dict(type='GIoULoss', loss_weight=1.0),
|
||||
loss_centerness=dict(
|
||||
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
||||
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
|
||||
conv_bias=True,
|
||||
test_cfg=dict(
|
||||
nms_pre=1000,
|
||||
min_bbox_size=0,
|
||||
score_thr=0.05,
|
||||
nms=dict(type='nms', iou_threshold=0.6),
|
||||
max_per_img=100)))
|
|
@ -0,0 +1,57 @@
|
|||
_base_ = ['./fcos.py', './coco_detection.py', 'configs/base.py']
|
||||
|
||||
CLASSES = [
|
||||
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
|
||||
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
|
||||
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
|
||||
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
|
||||
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
|
||||
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
|
||||
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
|
||||
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
|
||||
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
|
||||
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
|
||||
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
|
||||
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
|
||||
'hair drier', 'toothbrush'
|
||||
]
|
||||
|
||||
log_config = dict(
|
||||
interval=50,
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook'),
|
||||
# dict(type='TensorboardLoggerHook')
|
||||
])
|
||||
|
||||
checkpoint_config = dict(interval=10)
|
||||
# optimizer
|
||||
optimizer = dict(
|
||||
type='SGD',
|
||||
lr=0.01,
|
||||
momentum=0.9,
|
||||
weight_decay=0.0001,
|
||||
paramwise_options=dict(bias_lr_mult=2., bias_decay_mult=0.))
|
||||
optimizer_config = dict(grad_clip=None)
|
||||
# learning policy
|
||||
lr_config = dict(
|
||||
policy='step',
|
||||
warmup='linear',
|
||||
warmup_iters=500,
|
||||
warmup_ratio=1.0 / 3,
|
||||
step=[8, 11])
|
||||
|
||||
total_epochs = 12
|
||||
|
||||
# evaluation
|
||||
eval_config = dict(initial=True, interval=1, gpu_collect=False)
|
||||
# eval_config = dict(interval=1, gpu_collect=False)
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
evaluators=[
|
||||
dict(type='CocoDetectionEvaluator', classes=CLASSES),
|
||||
],
|
||||
)
|
||||
]
|
||||
|
||||
find_unused_parameters = False
|
|
@ -19,6 +19,11 @@ Pretrained on COCO2017 dataset.
|
|||
| ---------- | ------------------------------------------------------------ | ------------------------ | --------------- | ------------------------------------------------------------ |
|
||||
| ViTDet_MaskRCNN | [vitdet_maskrcnn](https://github.com/alibaba/EasyCV/tree/master/configs/detection/vitdet/vitdet_100e.py) | 50.57 | 44.96 | [model](https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection/vitdet/vit_base/vitdet_maskrcnn.pth) - [log](https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection/vitdet/vit_base/vitdet_maskrcnn.log.json) |
|
||||
|
||||
## FCOS
|
||||
|
||||
| Algorithm | Config | mAP<sup>val<br/><sub>0.5:0.95</sub> | AP<sup>val<br/><sub>50</sub> | Download |
|
||||
| ---------- | ------------------------------------------------------------ | ------------------------ | --------------- | ------------------------------------------------------------ |
|
||||
| FCOS-r50 | [fcos-r50](https://github.com/alibaba/EasyCV/tree/master/configs/detection/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py) | 38.58 | 57.18 | [model](https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection/fcos/epoch_12.pth) - [log](https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection/fcos/20220621_121315.log.json) |
|
||||
## DETR
|
||||
|
||||
| Algorithm | Config | bbox_mAP<sup>val<br/><sub>0.5:0.95</sub> | AP<sup>val<br/><sub>50</sub> | Download |
|
||||
|
|
|
@ -546,7 +546,6 @@ def ExportSingleImageDetectionBoxesToCoco(image_id, category_id_set,
|
|||
do not have the right lengths or (2) if each of the elements inside these
|
||||
lists do not have the correct shapes or (3) if image_ids are not integers.
|
||||
"""
|
||||
|
||||
assert len(detection_classes.shape) == 1 and len(detection_scores.shape) == 1, \
|
||||
'All entries in detection_classes and detection_scores expected to be of rank 1.'
|
||||
assert len(detection_boxes.shape) == 2,\
|
||||
|
|
|
@ -68,10 +68,8 @@ class DetSourceCoco(object):
|
|||
|
||||
def load_annotations(self, ann_file):
|
||||
"""Load annotation from COCO style annotation file.
|
||||
|
||||
Args:
|
||||
ann_file (str): Path of annotation file.
|
||||
|
||||
Returns:
|
||||
list[dict]: Annotation info from COCO api.
|
||||
"""
|
||||
|
@ -97,10 +95,8 @@ class DetSourceCoco(object):
|
|||
|
||||
def get_ann_info(self, idx):
|
||||
"""Get COCO annotation by index.
|
||||
|
||||
Args:
|
||||
idx (int): Index of data.
|
||||
|
||||
Returns:
|
||||
dict: Annotation info of specified index.
|
||||
"""
|
||||
|
@ -112,10 +108,8 @@ class DetSourceCoco(object):
|
|||
|
||||
def get_cat_ids(self, idx):
|
||||
"""Get COCO category ids by index.
|
||||
|
||||
Args:
|
||||
idx (int): Index of data.
|
||||
|
||||
Returns:
|
||||
list[int]: All categories in the image of specified index.
|
||||
"""
|
||||
|
@ -151,7 +145,6 @@ class DetSourceCoco(object):
|
|||
|
||||
def _set_group_flag(self):
|
||||
"""Set flag according to image aspect ratio.
|
||||
|
||||
Images with aspect ratio greater than 1 will be set as group 1,
|
||||
otherwise group 0.
|
||||
"""
|
||||
|
@ -163,11 +156,9 @@ class DetSourceCoco(object):
|
|||
|
||||
def _parse_ann_info(self, img_info, ann_info):
|
||||
"""Parse bbox and mask annotation.
|
||||
|
||||
Args:
|
||||
ann_info (list[dict]): Annotation info of an image.
|
||||
with_mask (bool): Whether to parse mask annotations.
|
||||
|
||||
Returns:
|
||||
dict: A dict containing the following keys: bboxes, bboxes_ignore,\
|
||||
labels, masks, seg_map. "masks" are raw annotations and not \
|
||||
|
@ -241,11 +232,9 @@ class DetSourceCoco(object):
|
|||
def xyxy2xywh(self, bbox):
|
||||
"""Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO
|
||||
evaluation.
|
||||
|
||||
Args:
|
||||
bbox (numpy.ndarray): The bounding boxes, shape (4, ), in
|
||||
``xyxy`` order.
|
||||
|
||||
Returns:
|
||||
list[float]: The converted bounding boxes, in ``xywh`` order.
|
||||
"""
|
||||
|
@ -299,10 +288,8 @@ class DetSourceCoco(object):
|
|||
|
||||
def prepare_train_img(self, idx):
|
||||
"""Get training data and annotations after pipeline.
|
||||
|
||||
Args:
|
||||
idx (int): Index of data.
|
||||
|
||||
Returns:
|
||||
dict: Training data and annotation after pipeline with new keys \
|
||||
introduced by pipeline.
|
||||
|
@ -316,10 +303,8 @@ class DetSourceCoco(object):
|
|||
|
||||
def __getitem__(self, idx):
|
||||
"""Get training/test data after pipeline.
|
||||
|
||||
Args:
|
||||
idx (int): Index of data.
|
||||
|
||||
Returns:
|
||||
dict: Training/test data (with annotation if `test_mode` is set \
|
||||
True).
|
||||
|
|
|
@ -1,20 +1,22 @@
|
|||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
import logging
|
||||
|
||||
from .dab_detr import DABDETRHead, DABDetrTransformer
|
||||
from .detection import Detection
|
||||
from .detr import DETRHead, DetrTransformer
|
||||
from .vitdet import SFP
|
||||
from easycv.models.detection.dab_detr import DABDETRHead, DABDetrTransformer
|
||||
from easycv.models.detection.detection import Detection
|
||||
from easycv.models.detection.detr import DETRHead, DetrTransformer
|
||||
from easycv.models.detection.fcos import FCOSHead
|
||||
from easycv.models.detection.necks import FPN, SFP
|
||||
|
||||
try:
|
||||
from .yolox.yolox import YOLOX
|
||||
from easycv.models.detection.yolox.yolox import YOLOX
|
||||
except Exception as e:
|
||||
logging.info(f'Exception: {e}')
|
||||
logging.info(
|
||||
'Import YOLOX failed! please check your CUDA & Pytorch Version')
|
||||
|
||||
try:
|
||||
from .yolox_edge.yolox_edge import YOLOX_EDGE
|
||||
from easycv.models.detection.yolox_edge.yolox_edge import YOLOX_EDGE
|
||||
except Exception as e:
|
||||
logging.info(f'Exception: {e}')
|
||||
logging.info(
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
from .fcos_head import FCOSHead
|
|
@ -0,0 +1,865 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from mmcv.cnn import ConvModule, Scale
|
||||
|
||||
from easycv.models.builder import HEADS, build_loss
|
||||
from easycv.models.detection.utils import (MlvlPointGenerator, batched_nms,
|
||||
bbox2result, distance2bbox,
|
||||
filter_scores_and_topk,
|
||||
select_single_mlvl)
|
||||
from easycv.models.utils import reduce_mean
|
||||
from easycv.utils.misc import multi_apply
|
||||
|
||||
INF = 1e8
|
||||
|
||||
|
||||
@HEADS.register_module()
|
||||
class FCOSHead(nn.Module):
|
||||
"""Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_.
|
||||
|
||||
The FCOS head does not use anchor boxes. Instead bounding boxes are
|
||||
predicted at each pixel and a centerness measure is used to suppress
|
||||
low-quality predictions.
|
||||
Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training
|
||||
tricks used in official repo, which will bring remarkable mAP gains
|
||||
of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for
|
||||
more detail.
|
||||
|
||||
Args:
|
||||
num_classes (int): Number of categories excluding the background
|
||||
category.
|
||||
in_channels (int): Number of channels in the input feature map.
|
||||
strides (list[int] | list[tuple[int, int]]): Strides of points
|
||||
in multiple feature levels. Default: (4, 8, 16, 32, 64).
|
||||
regress_ranges (tuple[tuple[int, int]]): Regress range of multiple
|
||||
level points.
|
||||
center_sampling (bool): If true, use center sampling. Default: False.
|
||||
center_sample_radius (float): Radius of center sampling. Default: 1.5.
|
||||
norm_on_bbox (bool): If true, normalize the regression targets
|
||||
with FPN strides. Default: False.
|
||||
centerness_on_reg (bool): If true, position centerness on the
|
||||
regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
|
||||
Default: False.
|
||||
conv_bias (bool | str): If specified as `auto`, it will be decided by the
|
||||
norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise
|
||||
False. Default: "auto".
|
||||
loss_cls (dict): Config of classification loss.
|
||||
loss_bbox (dict): Config of localization loss.
|
||||
loss_centerness (dict): Config of centerness loss.
|
||||
norm_cfg (dict): dictionary to construct and config norm layer.
|
||||
Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
|
||||
init_cfg (dict or list[dict], optional): Initialization config dict.
|
||||
|
||||
Example:
|
||||
>>> self = FCOSHead(11, 7)
|
||||
>>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
|
||||
>>> cls_score, bbox_pred, centerness = self.forward(feats)
|
||||
>>> assert len(cls_score) == len(self.scales)
|
||||
""" # noqa: E501
|
||||
|
||||
def __init__(self,
|
||||
num_classes,
|
||||
in_channels,
|
||||
stacked_convs=4,
|
||||
feat_channels=256,
|
||||
strides=[8, 16, 32, 64, 128],
|
||||
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),
|
||||
(512, INF)),
|
||||
center_sampling=False,
|
||||
center_sample_radius=1.5,
|
||||
norm_on_bbox=False,
|
||||
centerness_on_reg=False,
|
||||
conv_cfg=None,
|
||||
loss_cls=dict(
|
||||
type='FocalLoss',
|
||||
use_sigmoid=True,
|
||||
gamma=2.0,
|
||||
alpha=0.25,
|
||||
loss_weight=1.0),
|
||||
loss_bbox=dict(type='IoULoss', loss_weight=1.0),
|
||||
loss_centerness=dict(
|
||||
type='CrossEntropyLoss',
|
||||
use_sigmoid=True,
|
||||
loss_weight=1.0),
|
||||
norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
|
||||
conv_bias=True,
|
||||
test_cfg=dict(
|
||||
nms_pre=1000,
|
||||
min_bbox_size=0,
|
||||
score_thr=0.05,
|
||||
nms=dict(type='nms', iou_threshold=0.5),
|
||||
max_per_img=100),
|
||||
**kwargs):
|
||||
super(FCOSHead, self).__init__()
|
||||
|
||||
self.regress_ranges = regress_ranges
|
||||
self.center_sampling = center_sampling
|
||||
self.center_sample_radius = center_sample_radius
|
||||
self.norm_on_bbox = norm_on_bbox
|
||||
self.centerness_on_reg = centerness_on_reg
|
||||
|
||||
self.num_classes = num_classes
|
||||
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
|
||||
if self.use_sigmoid_cls:
|
||||
self.cls_out_channels = num_classes
|
||||
else:
|
||||
self.cls_out_channels = num_classes + 1
|
||||
self.in_channels = in_channels
|
||||
self.feat_channels = feat_channels
|
||||
self.stacked_convs = stacked_convs
|
||||
self.strides = strides
|
||||
assert conv_bias == 'auto' or isinstance(conv_bias, bool)
|
||||
self.conv_bias = conv_bias
|
||||
self.loss_cls = build_loss(loss_cls)
|
||||
self.loss_bbox = build_loss(loss_bbox)
|
||||
|
||||
self.prior_generator = MlvlPointGenerator(strides)
|
||||
|
||||
# In order to keep a more general interface and be consistent with
|
||||
# anchor_head. We can think of point like one anchor
|
||||
self.num_base_priors = self.prior_generator.num_base_priors[0]
|
||||
|
||||
self.test_cfg = test_cfg
|
||||
self.conv_cfg = conv_cfg
|
||||
self.norm_cfg = norm_cfg
|
||||
|
||||
self._init_layers()
|
||||
|
||||
self.loss_centerness = build_loss(loss_centerness)
|
||||
|
||||
def _init_layers(self):
|
||||
"""Initialize layers of the head."""
|
||||
self._init_cls_convs()
|
||||
self._init_reg_convs()
|
||||
self._init_predictor()
|
||||
self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
|
||||
self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
|
||||
|
||||
def _init_cls_convs(self):
|
||||
"""Initialize classification conv layers of the head."""
|
||||
self.cls_convs = nn.ModuleList()
|
||||
for i in range(self.stacked_convs):
|
||||
chn = self.in_channels if i == 0 else self.feat_channels
|
||||
conv_cfg = self.conv_cfg
|
||||
self.cls_convs.append(
|
||||
ConvModule(
|
||||
chn,
|
||||
self.feat_channels,
|
||||
3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=self.norm_cfg,
|
||||
bias=self.conv_bias))
|
||||
|
||||
def _init_reg_convs(self):
|
||||
"""Initialize bbox regression conv layers of the head."""
|
||||
self.reg_convs = nn.ModuleList()
|
||||
for i in range(self.stacked_convs):
|
||||
chn = self.in_channels if i == 0 else self.feat_channels
|
||||
conv_cfg = self.conv_cfg
|
||||
self.reg_convs.append(
|
||||
ConvModule(
|
||||
chn,
|
||||
self.feat_channels,
|
||||
3,
|
||||
stride=1,
|
||||
padding=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=self.norm_cfg,
|
||||
bias=self.conv_bias))
|
||||
|
||||
def _init_predictor(self):
|
||||
"""Initialize predictor layers of the head."""
|
||||
self.conv_cls = nn.Conv2d(
|
||||
self.feat_channels, self.cls_out_channels, 3, padding=1)
|
||||
self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
|
||||
|
||||
def init_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
torch.nn.init.normal_(m.weight, std=0.01)
|
||||
if hasattr(m, 'bias') and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
# initialize the bias for focal loss
|
||||
prior_prob = 0.01
|
||||
bias_value = -math.log((1 - prior_prob) / prior_prob)
|
||||
torch.nn.init.constant_(self.conv_cls.bias, bias_value)
|
||||
|
||||
def forward(self, feats):
|
||||
"""Forward features from the upstream network.
|
||||
|
||||
Args:
|
||||
feats (tuple[Tensor]): Features from the upstream network, each is
|
||||
a 4D-tensor.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
cls_scores (list[Tensor]): Box scores for each scale level, \
|
||||
each is a 4D-tensor, the channel number is \
|
||||
num_points * num_classes.
|
||||
bbox_preds (list[Tensor]): Box energies / deltas for each \
|
||||
scale level, each is a 4D-tensor, the channel number is \
|
||||
num_points * 4.
|
||||
centernesses (list[Tensor]): centerness for each scale level, \
|
||||
each is a 4D-tensor, the channel number is num_points * 1.
|
||||
"""
|
||||
return multi_apply(self.forward_single, feats, self.scales,
|
||||
self.strides)
|
||||
|
||||
def forward_single(self, x, scale, stride):
|
||||
"""Forward features of a single scale level.
|
||||
|
||||
Args:
|
||||
x (Tensor): FPN feature maps of the specified stride.
|
||||
scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
|
||||
the bbox prediction.
|
||||
stride (int): The corresponding stride for feature maps, only
|
||||
used to normalize the bbox prediction when self.norm_on_bbox
|
||||
is True.
|
||||
|
||||
Returns:
|
||||
tuple: scores for each class, bbox predictions and centerness \
|
||||
predictions of input feature maps.
|
||||
"""
|
||||
cls_feat = x
|
||||
reg_feat = x
|
||||
|
||||
for cls_layer in self.cls_convs:
|
||||
cls_feat = cls_layer(cls_feat)
|
||||
cls_score = self.conv_cls(cls_feat)
|
||||
|
||||
for reg_layer in self.reg_convs:
|
||||
reg_feat = reg_layer(reg_feat)
|
||||
bbox_pred = self.conv_reg(reg_feat)
|
||||
|
||||
if self.centerness_on_reg:
|
||||
centerness = self.conv_centerness(reg_feat)
|
||||
else:
|
||||
centerness = self.conv_centerness(cls_feat)
|
||||
# scale the bbox_pred of different level
|
||||
# float to avoid overflow when enabling FP16
|
||||
bbox_pred = scale(bbox_pred).float()
|
||||
if self.norm_on_bbox:
|
||||
# bbox_pred needed for gradient computation has been modified
|
||||
# by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
|
||||
# F.relu(bbox_pred) with bbox_pred.clamp(min=0)
|
||||
bbox_pred = bbox_pred.clamp(min=0)
|
||||
if not self.training:
|
||||
bbox_pred *= stride
|
||||
else:
|
||||
bbox_pred = bbox_pred.exp()
|
||||
return cls_score, bbox_pred, centerness
|
||||
|
||||
def forward_train(self,
|
||||
x,
|
||||
img_metas,
|
||||
gt_bboxes,
|
||||
gt_labels=None,
|
||||
gt_bboxes_ignore=None,
|
||||
proposal_cfg=None,
|
||||
**kwargs):
|
||||
outs = self.forward(x)
|
||||
if gt_labels is None:
|
||||
loss_inputs = outs + (gt_bboxes, img_metas)
|
||||
else:
|
||||
loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
|
||||
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
|
||||
return losses
|
||||
|
||||
def forward_test(self, feats, img_metas, rescale=False):
|
||||
"""Test function without test-time augmentation.
|
||||
|
||||
Args:
|
||||
feats (tuple[torch.Tensor]): Multi-level features from the
|
||||
upstream network, each is a 4D-tensor.
|
||||
img_metas (list[dict]): List of image information.
|
||||
rescale (bool, optional): Whether to rescale the results.
|
||||
Defaults to False.
|
||||
|
||||
Returns:
|
||||
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
|
||||
The first item is ``bboxes`` with shape (n, 5),
|
||||
where 5 represent (tl_x, tl_y, br_x, br_y, score).
|
||||
The shape of the second tensor in the tuple is ``labels``
|
||||
with shape (n, ).
|
||||
"""
|
||||
outs = self.forward(feats)
|
||||
results_list = self.get_bboxes(
|
||||
*outs, img_metas=img_metas, rescale=True)
|
||||
results = [
|
||||
bbox2result(det_bboxes, det_labels, self.num_classes)
|
||||
for det_bboxes, det_labels in results_list
|
||||
]
|
||||
|
||||
detection_boxes = []
|
||||
detection_scores = []
|
||||
detection_classes = []
|
||||
for res_i in results:
|
||||
bbox_result = res_i
|
||||
bboxes = np.vstack(bbox_result)
|
||||
labels = [
|
||||
np.full(bbox.shape[0], i, dtype=np.int32)
|
||||
for i, bbox in enumerate(bbox_result)
|
||||
]
|
||||
labels = np.concatenate(labels)
|
||||
|
||||
scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None
|
||||
bboxes = bboxes[:, 0:4] if bboxes.shape[1] == 5 else bboxes
|
||||
assert bboxes.shape[1] == 4
|
||||
|
||||
detection_boxes.append(bboxes)
|
||||
detection_scores.append(scores)
|
||||
detection_classes.append(labels)
|
||||
|
||||
assert len(img_metas) == 1
|
||||
outputs = {
|
||||
'detection_boxes': detection_boxes,
|
||||
'detection_scores': detection_scores,
|
||||
'detection_classes': detection_classes,
|
||||
'img_metas': img_metas
|
||||
}
|
||||
|
||||
return outputs
|
||||
|
||||
def loss(self,
|
||||
cls_scores,
|
||||
bbox_preds,
|
||||
centernesses,
|
||||
gt_bboxes,
|
||||
gt_labels,
|
||||
img_metas,
|
||||
gt_bboxes_ignore=None):
|
||||
"""Compute loss of the head.
|
||||
|
||||
Args:
|
||||
cls_scores (list[Tensor]): Box scores for each scale level,
|
||||
each is a 4D-tensor, the channel number is
|
||||
num_points * num_classes.
|
||||
bbox_preds (list[Tensor]): Box energies / deltas for each scale
|
||||
level, each is a 4D-tensor, the channel number is
|
||||
num_points * 4.
|
||||
centernesses (list[Tensor]): centerness for each scale level, each
|
||||
is a 4D-tensor, the channel number is num_points * 1.
|
||||
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
|
||||
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
|
||||
gt_labels (list[Tensor]): class indices corresponding to each box
|
||||
img_metas (list[dict]): Meta information of each image, e.g.,
|
||||
image size, scaling factor, etc.
|
||||
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
|
||||
boxes can be ignored when computing the loss.
|
||||
|
||||
Returns:
|
||||
dict[str, Tensor]: A dictionary of loss components.
|
||||
"""
|
||||
assert len(cls_scores) == len(bbox_preds) == len(centernesses)
|
||||
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
|
||||
all_level_points = self.prior_generator.grid_priors(
|
||||
featmap_sizes,
|
||||
dtype=bbox_preds[0].dtype,
|
||||
device=bbox_preds[0].device)
|
||||
labels, bbox_targets = self.get_targets(all_level_points, gt_bboxes,
|
||||
gt_labels)
|
||||
|
||||
num_imgs = cls_scores[0].size(0)
|
||||
# flatten cls_scores, bbox_preds and centerness
|
||||
flatten_cls_scores = [
|
||||
cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
|
||||
for cls_score in cls_scores
|
||||
]
|
||||
flatten_bbox_preds = [
|
||||
bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
|
||||
for bbox_pred in bbox_preds
|
||||
]
|
||||
flatten_centerness = [
|
||||
centerness.permute(0, 2, 3, 1).reshape(-1)
|
||||
for centerness in centernesses
|
||||
]
|
||||
flatten_cls_scores = torch.cat(flatten_cls_scores)
|
||||
flatten_bbox_preds = torch.cat(flatten_bbox_preds)
|
||||
flatten_centerness = torch.cat(flatten_centerness)
|
||||
flatten_labels = torch.cat(labels)
|
||||
flatten_bbox_targets = torch.cat(bbox_targets)
|
||||
# repeat points to align with bbox_preds
|
||||
flatten_points = torch.cat(
|
||||
[points.repeat(num_imgs, 1) for points in all_level_points])
|
||||
|
||||
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
|
||||
bg_class_ind = self.num_classes
|
||||
pos_inds = ((flatten_labels >= 0)
|
||||
& (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
|
||||
num_pos = torch.tensor(
|
||||
len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
|
||||
num_pos = max(reduce_mean(num_pos), 1.0)
|
||||
loss_cls = self.loss_cls(
|
||||
flatten_cls_scores, flatten_labels, avg_factor=num_pos)
|
||||
|
||||
pos_bbox_preds = flatten_bbox_preds[pos_inds]
|
||||
pos_centerness = flatten_centerness[pos_inds]
|
||||
pos_bbox_targets = flatten_bbox_targets[pos_inds]
|
||||
pos_centerness_targets = self.centerness_target(pos_bbox_targets)
|
||||
# centerness weighted iou loss
|
||||
centerness_denorm = max(
|
||||
reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)
|
||||
|
||||
if len(pos_inds) > 0:
|
||||
pos_points = flatten_points[pos_inds]
|
||||
pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds)
|
||||
pos_decoded_target_preds = distance2bbox(pos_points,
|
||||
pos_bbox_targets)
|
||||
loss_bbox = self.loss_bbox(
|
||||
pos_decoded_bbox_preds,
|
||||
pos_decoded_target_preds,
|
||||
weight=pos_centerness_targets,
|
||||
avg_factor=centerness_denorm)
|
||||
loss_centerness = self.loss_centerness(
|
||||
pos_centerness, pos_centerness_targets, avg_factor=num_pos)
|
||||
else:
|
||||
loss_bbox = pos_bbox_preds.sum()
|
||||
loss_centerness = pos_centerness.sum()
|
||||
|
||||
return dict(
|
||||
loss_cls=loss_cls,
|
||||
loss_bbox=loss_bbox,
|
||||
loss_centerness=loss_centerness)
|
||||
|
||||
def get_targets(self, points, gt_bboxes_list, gt_labels_list):
|
||||
"""Compute regression, classification and centerness targets for points
|
||||
in multiple images.
|
||||
|
||||
Args:
|
||||
points (list[Tensor]): Points of each fpn level, each has shape
|
||||
(num_points, 2).
|
||||
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
|
||||
each has shape (num_gt, 4).
|
||||
gt_labels_list (list[Tensor]): Ground truth labels of each box,
|
||||
each has shape (num_gt,).
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
concat_lvl_labels (list[Tensor]): Labels of each level. \
|
||||
concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
|
||||
level.
|
||||
"""
|
||||
assert len(points) == len(self.regress_ranges)
|
||||
num_levels = len(points)
|
||||
# expand regress ranges to align with points
|
||||
expanded_regress_ranges = [
|
||||
points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
|
||||
points[i]) for i in range(num_levels)
|
||||
]
|
||||
# concat all levels points and regress ranges
|
||||
concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
|
||||
concat_points = torch.cat(points, dim=0)
|
||||
|
||||
# the number of points per img, per lvl
|
||||
num_points = [center.size(0) for center in points]
|
||||
|
||||
# get labels and bbox_targets of each image
|
||||
labels_list, bbox_targets_list = multi_apply(
|
||||
self._get_target_single,
|
||||
gt_bboxes_list,
|
||||
gt_labels_list,
|
||||
points=concat_points,
|
||||
regress_ranges=concat_regress_ranges,
|
||||
num_points_per_lvl=num_points)
|
||||
|
||||
# split to per img, per level
|
||||
labels_list = [labels.split(num_points, 0) for labels in labels_list]
|
||||
bbox_targets_list = [
|
||||
bbox_targets.split(num_points, 0)
|
||||
for bbox_targets in bbox_targets_list
|
||||
]
|
||||
|
||||
# concat per level image
|
||||
concat_lvl_labels = []
|
||||
concat_lvl_bbox_targets = []
|
||||
for i in range(num_levels):
|
||||
concat_lvl_labels.append(
|
||||
torch.cat([labels[i] for labels in labels_list]))
|
||||
bbox_targets = torch.cat(
|
||||
[bbox_targets[i] for bbox_targets in bbox_targets_list])
|
||||
if self.norm_on_bbox:
|
||||
bbox_targets = bbox_targets / self.strides[i]
|
||||
concat_lvl_bbox_targets.append(bbox_targets)
|
||||
return concat_lvl_labels, concat_lvl_bbox_targets
|
||||
|
||||
def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges,
|
||||
num_points_per_lvl):
|
||||
"""Compute regression and classification targets for a single image."""
|
||||
num_points = points.size(0)
|
||||
num_gts = gt_labels.size(0)
|
||||
if num_gts == 0:
|
||||
return gt_labels.new_full((num_points,), self.num_classes), \
|
||||
gt_bboxes.new_zeros((num_points, 4))
|
||||
|
||||
areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
|
||||
gt_bboxes[:, 3] - gt_bboxes[:, 1])
|
||||
# TODO: figure out why these two are different
|
||||
# areas = areas[None].expand(num_points, num_gts)
|
||||
areas = areas[None].repeat(num_points, 1)
|
||||
regress_ranges = regress_ranges[:, None, :].expand(
|
||||
num_points, num_gts, 2)
|
||||
gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
|
||||
xs, ys = points[:, 0], points[:, 1]
|
||||
xs = xs[:, None].expand(num_points, num_gts)
|
||||
ys = ys[:, None].expand(num_points, num_gts)
|
||||
|
||||
left = xs - gt_bboxes[..., 0]
|
||||
right = gt_bboxes[..., 2] - xs
|
||||
top = ys - gt_bboxes[..., 1]
|
||||
bottom = gt_bboxes[..., 3] - ys
|
||||
bbox_targets = torch.stack((left, top, right, bottom), -1)
|
||||
|
||||
if self.center_sampling:
|
||||
# condition1: inside a `center bbox`
|
||||
radius = self.center_sample_radius
|
||||
center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
|
||||
center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
|
||||
center_gts = torch.zeros_like(gt_bboxes)
|
||||
stride = center_xs.new_zeros(center_xs.shape)
|
||||
|
||||
# project the points on current lvl back to the `original` sizes
|
||||
lvl_begin = 0
|
||||
for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
|
||||
lvl_end = lvl_begin + num_points_lvl
|
||||
stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
|
||||
lvl_begin = lvl_end
|
||||
|
||||
x_mins = center_xs - stride
|
||||
y_mins = center_ys - stride
|
||||
x_maxs = center_xs + stride
|
||||
y_maxs = center_ys + stride
|
||||
center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
|
||||
x_mins, gt_bboxes[..., 0])
|
||||
center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
|
||||
y_mins, gt_bboxes[..., 1])
|
||||
center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
|
||||
gt_bboxes[..., 2], x_maxs)
|
||||
center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
|
||||
gt_bboxes[..., 3], y_maxs)
|
||||
|
||||
cb_dist_left = xs - center_gts[..., 0]
|
||||
cb_dist_right = center_gts[..., 2] - xs
|
||||
cb_dist_top = ys - center_gts[..., 1]
|
||||
cb_dist_bottom = center_gts[..., 3] - ys
|
||||
center_bbox = torch.stack(
|
||||
(cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
|
||||
inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
|
||||
else:
|
||||
# condition1: inside a gt bbox
|
||||
inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0
|
||||
|
||||
# condition2: limit the regression range for each location
|
||||
max_regress_distance = bbox_targets.max(-1)[0]
|
||||
inside_regress_range = (
|
||||
(max_regress_distance >= regress_ranges[..., 0])
|
||||
& (max_regress_distance <= regress_ranges[..., 1]))
|
||||
|
||||
# if there are still more than one objects for a location,
|
||||
# we choose the one with minimal area
|
||||
areas[inside_gt_bbox_mask == 0] = INF
|
||||
areas[inside_regress_range == 0] = INF
|
||||
min_area, min_area_inds = areas.min(dim=1)
|
||||
|
||||
labels = gt_labels[min_area_inds]
|
||||
labels[min_area == INF] = self.num_classes # set as BG
|
||||
bbox_targets = bbox_targets[range(num_points), min_area_inds]
|
||||
|
||||
return labels, bbox_targets
|
||||
|
||||
def centerness_target(self, pos_bbox_targets):
|
||||
"""Compute centerness targets.
|
||||
|
||||
Args:
|
||||
pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape
|
||||
(num_pos, 4)
|
||||
|
||||
Returns:
|
||||
Tensor: Centerness target.
|
||||
"""
|
||||
# only calculate pos centerness targets, otherwise there may be nan
|
||||
left_right = pos_bbox_targets[:, [0, 2]]
|
||||
top_bottom = pos_bbox_targets[:, [1, 3]]
|
||||
if len(left_right) == 0:
|
||||
centerness_targets = left_right[..., 0]
|
||||
else:
|
||||
centerness_targets = (
|
||||
left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
|
||||
top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
|
||||
return torch.sqrt(centerness_targets)
|
||||
|
||||
def get_bboxes(self,
|
||||
cls_scores,
|
||||
bbox_preds,
|
||||
score_factors=None,
|
||||
img_metas=None,
|
||||
cfg=None,
|
||||
rescale=False,
|
||||
with_nms=True,
|
||||
**kwargs):
|
||||
"""Transform network outputs of a batch into bbox results.
|
||||
|
||||
Note: When score_factors is not None, the cls_scores are
|
||||
usually multiplied by it then obtain the real score used in NMS,
|
||||
such as CenterNess in FCOS, IoU branch in ATSS.
|
||||
|
||||
Args:
|
||||
cls_scores (list[Tensor]): Classification scores for all
|
||||
scale levels, each is a 4D-tensor, has shape
|
||||
(batch_size, num_priors * num_classes, H, W).
|
||||
bbox_preds (list[Tensor]): Box energies / deltas for all
|
||||
scale levels, each is a 4D-tensor, has shape
|
||||
(batch_size, num_priors * 4, H, W).
|
||||
score_factors (list[Tensor], Optional): Score factor for
|
||||
all scale level, each is a 4D-tensor, has shape
|
||||
(batch_size, num_priors * 1, H, W). Default None.
|
||||
img_metas (list[dict], Optional): Image meta info. Default None.
|
||||
cfg (mmcv.Config, Optional): Test / postprocessing configuration,
|
||||
if None, test_cfg would be used. Default None.
|
||||
rescale (bool): If True, return boxes in original image space.
|
||||
Default False.
|
||||
with_nms (bool): If True, do nms before return boxes.
|
||||
Default True.
|
||||
|
||||
Returns:
|
||||
list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple.
|
||||
The first item is an (n, 5) tensor, where the first 4 columns
|
||||
are bounding box positions (tl_x, tl_y, br_x, br_y) and the
|
||||
5-th column is a score between 0 and 1. The second item is a
|
||||
(n,) tensor where each item is the predicted class label of
|
||||
the corresponding box.
|
||||
"""
|
||||
assert len(cls_scores) == len(bbox_preds)
|
||||
|
||||
if score_factors is None:
|
||||
# e.g. Retina, FreeAnchor, Foveabox, etc.
|
||||
with_score_factors = False
|
||||
else:
|
||||
# e.g. FCOS, PAA, ATSS, AutoAssign, etc.
|
||||
with_score_factors = True
|
||||
assert len(cls_scores) == len(score_factors)
|
||||
|
||||
num_levels = len(cls_scores)
|
||||
|
||||
featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
|
||||
mlvl_priors = self.prior_generator.grid_priors(
|
||||
featmap_sizes,
|
||||
dtype=cls_scores[0].dtype,
|
||||
device=cls_scores[0].device)
|
||||
|
||||
result_list = []
|
||||
|
||||
for img_id in range(len(img_metas)):
|
||||
img_meta = img_metas[img_id]
|
||||
cls_score_list = select_single_mlvl(cls_scores, img_id)
|
||||
bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
|
||||
if with_score_factors:
|
||||
score_factor_list = select_single_mlvl(score_factors, img_id)
|
||||
else:
|
||||
score_factor_list = [None for _ in range(num_levels)]
|
||||
|
||||
results = self._get_bboxes_single(cls_score_list, bbox_pred_list,
|
||||
score_factor_list, mlvl_priors,
|
||||
img_meta, cfg, rescale, with_nms,
|
||||
**kwargs)
|
||||
result_list.append(results)
|
||||
return result_list
|
||||
|
||||
def _get_bboxes_single(self,
|
||||
cls_score_list,
|
||||
bbox_pred_list,
|
||||
score_factor_list,
|
||||
mlvl_priors,
|
||||
img_meta,
|
||||
cfg,
|
||||
rescale=False,
|
||||
with_nms=True,
|
||||
**kwargs):
|
||||
"""Transform outputs of a single image into bbox predictions.
|
||||
|
||||
Args:
|
||||
cls_score_list (list[Tensor]): Box scores from all scale
|
||||
levels of a single image, each item has shape
|
||||
(num_priors * num_classes, H, W).
|
||||
bbox_pred_list (list[Tensor]): Box energies / deltas from
|
||||
all scale levels of a single image, each item has shape
|
||||
(num_priors * 4, H, W).
|
||||
score_factor_list (list[Tensor]): Score factor from all scale
|
||||
levels of a single image, each item has shape
|
||||
(num_priors * 1, H, W).
|
||||
mlvl_priors (list[Tensor]): Each element in the list is
|
||||
the priors of a single level in feature pyramid. In all
|
||||
anchor-based methods, it has shape (num_priors, 4). In
|
||||
all anchor-free methods, it has shape (num_priors, 2)
|
||||
when `with_stride=True`, otherwise it still has shape
|
||||
(num_priors, 4).
|
||||
img_meta (dict): Image meta info.
|
||||
cfg (mmcv.Config): Test / postprocessing configuration,
|
||||
if None, test_cfg would be used.
|
||||
rescale (bool): If True, return boxes in original image space.
|
||||
Default: False.
|
||||
with_nms (bool): If True, do nms before return boxes.
|
||||
Default: True.
|
||||
|
||||
Returns:
|
||||
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
|
||||
is False and mlvl_score_factor is None, return mlvl_bboxes and
|
||||
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
|
||||
mlvl_score_factor. Usually with_nms is False is used for aug
|
||||
test. If with_nms is True, then return the following format
|
||||
|
||||
- det_bboxes (Tensor): Predicted bboxes with shape \
|
||||
[num_bboxes, 5], where the first 4 columns are bounding \
|
||||
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
|
||||
column are scores between 0 and 1.
|
||||
- det_labels (Tensor): Predicted labels of the corresponding \
|
||||
box with shape [num_bboxes].
|
||||
"""
|
||||
if score_factor_list[0] is None:
|
||||
# e.g. Retina, FreeAnchor, etc.
|
||||
with_score_factors = False
|
||||
else:
|
||||
# e.g. FCOS, PAA, ATSS, etc.
|
||||
with_score_factors = True
|
||||
|
||||
cfg = self.test_cfg if cfg is None else cfg
|
||||
img_shape = img_meta['img_shape']
|
||||
nms_pre = cfg.get('nms_pre', -1)
|
||||
|
||||
mlvl_bboxes = []
|
||||
mlvl_scores = []
|
||||
mlvl_labels = []
|
||||
if with_score_factors:
|
||||
mlvl_score_factors = []
|
||||
else:
|
||||
mlvl_score_factors = None
|
||||
for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
|
||||
enumerate(zip(cls_score_list, bbox_pred_list,
|
||||
score_factor_list, mlvl_priors)):
|
||||
|
||||
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
|
||||
|
||||
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
|
||||
if with_score_factors:
|
||||
score_factor = score_factor.permute(1, 2,
|
||||
0).reshape(-1).sigmoid()
|
||||
cls_score = cls_score.permute(1, 2,
|
||||
0).reshape(-1, self.cls_out_channels)
|
||||
if self.use_sigmoid_cls:
|
||||
scores = cls_score.sigmoid()
|
||||
else:
|
||||
# remind that we set FG labels to [0, num_class-1]
|
||||
# since mmdet v2.0
|
||||
# BG cat_id: num_class
|
||||
scores = cls_score.softmax(-1)[:, :-1]
|
||||
|
||||
# After https://github.com/open-mmlab/mmdetection/pull/6268/,
|
||||
# this operation keeps fewer bboxes under the same `nms_pre`.
|
||||
# There is no difference in performance for most models. If you
|
||||
# find a slight drop in performance, you can set a larger
|
||||
# `nms_pre` than before.
|
||||
results = filter_scores_and_topk(
|
||||
scores, cfg.score_thr, nms_pre,
|
||||
dict(bbox_pred=bbox_pred, priors=priors))
|
||||
scores, labels, keep_idxs, filtered_results = results
|
||||
|
||||
bbox_pred = filtered_results['bbox_pred']
|
||||
priors = filtered_results['priors']
|
||||
|
||||
if with_score_factors:
|
||||
score_factor = score_factor[keep_idxs]
|
||||
|
||||
bboxes = distance2bbox(priors, bbox_pred, max_shape=img_shape)
|
||||
|
||||
mlvl_bboxes.append(bboxes)
|
||||
mlvl_scores.append(scores)
|
||||
mlvl_labels.append(labels)
|
||||
if with_score_factors:
|
||||
mlvl_score_factors.append(score_factor)
|
||||
|
||||
return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes,
|
||||
img_meta['scale_factor'], cfg, rescale,
|
||||
with_nms, mlvl_score_factors, **kwargs)
|
||||
|
||||
def _bbox_post_process(self,
|
||||
mlvl_scores,
|
||||
mlvl_labels,
|
||||
mlvl_bboxes,
|
||||
scale_factor,
|
||||
cfg,
|
||||
rescale=False,
|
||||
with_nms=True,
|
||||
mlvl_score_factors=None,
|
||||
**kwargs):
|
||||
"""bbox post-processing method.
|
||||
|
||||
The boxes would be rescaled to the original image scale and do
|
||||
the nms operation. Usually `with_nms` is False is used for aug test.
|
||||
|
||||
Args:
|
||||
mlvl_scores (list[Tensor]): Box scores from all scale
|
||||
levels of a single image, each item has shape
|
||||
(num_bboxes, ).
|
||||
mlvl_labels (list[Tensor]): Box class labels from all scale
|
||||
levels of a single image, each item has shape
|
||||
(num_bboxes, ).
|
||||
mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale
|
||||
levels of a single image, each item has shape (num_bboxes, 4).
|
||||
scale_factor (ndarray, optional): Scale factor of the image arange
|
||||
as (w_scale, h_scale, w_scale, h_scale).
|
||||
cfg (mmcv.Config): Test / postprocessing configuration,
|
||||
if None, test_cfg would be used.
|
||||
rescale (bool): If True, return boxes in original image space.
|
||||
Default: False.
|
||||
with_nms (bool): If True, do nms before return boxes.
|
||||
Default: True.
|
||||
mlvl_score_factors (list[Tensor], optional): Score factor from
|
||||
all scale levels of a single image, each item has shape
|
||||
(num_bboxes, ). Default: None.
|
||||
|
||||
Returns:
|
||||
tuple[Tensor]: Results of detected bboxes and labels. If with_nms
|
||||
is False and mlvl_score_factor is None, return mlvl_bboxes and
|
||||
mlvl_scores, else return mlvl_bboxes, mlvl_scores and
|
||||
mlvl_score_factor. Usually with_nms is False is used for aug
|
||||
test. If with_nms is True, then return the following format
|
||||
|
||||
- det_bboxes (Tensor): Predicted bboxes with shape \
|
||||
[num_bboxes, 5], where the first 4 columns are bounding \
|
||||
box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
|
||||
column are scores between 0 and 1.
|
||||
- det_labels (Tensor): Predicted labels of the corresponding \
|
||||
box with shape [num_bboxes].
|
||||
"""
|
||||
assert len(mlvl_scores) == len(mlvl_bboxes) == len(mlvl_labels)
|
||||
|
||||
mlvl_bboxes = torch.cat(mlvl_bboxes)
|
||||
if rescale:
|
||||
mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
|
||||
mlvl_scores = torch.cat(mlvl_scores)
|
||||
mlvl_labels = torch.cat(mlvl_labels)
|
||||
|
||||
if mlvl_score_factors is not None:
|
||||
# TODO: Add sqrt operation in order to be consistent with
|
||||
# the paper.
|
||||
mlvl_score_factors = torch.cat(mlvl_score_factors)
|
||||
mlvl_scores = mlvl_scores * mlvl_score_factors
|
||||
|
||||
if with_nms:
|
||||
if mlvl_bboxes.numel() == 0:
|
||||
det_bboxes = torch.cat([mlvl_bboxes, mlvl_scores[:, None]], -1)
|
||||
return det_bboxes, mlvl_labels
|
||||
|
||||
det_bboxes, keep_idxs = batched_nms(mlvl_bboxes, mlvl_scores,
|
||||
mlvl_labels, cfg.nms)
|
||||
det_bboxes = det_bboxes[:cfg.max_per_img]
|
||||
det_labels = mlvl_labels[keep_idxs][:cfg.max_per_img]
|
||||
return det_bboxes, det_labels
|
||||
else:
|
||||
return mlvl_bboxes, mlvl_scores, mlvl_labels
|
|
@ -1 +1,2 @@
|
|||
from .fpn import FPN
|
||||
from .sfp import SFP
|
|
@ -0,0 +1,204 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from mmcv.cnn import ConvModule
|
||||
|
||||
from easycv.models.registry import NECKS
|
||||
|
||||
|
||||
@NECKS.register_module()
|
||||
class FPN(nn.Module):
|
||||
r"""Feature Pyramid Network.
|
||||
This is an implementation of paper `Feature Pyramid Networks for Object
|
||||
Detection <https://arxiv.org/abs/1612.03144>`_.
|
||||
Args:
|
||||
in_channels (list[int]): Number of input channels per scale.
|
||||
out_channels (int): Number of output channels (used at each scale).
|
||||
num_outs (int): Number of output scales.
|
||||
start_level (int): Index of the start input backbone level used to
|
||||
build the feature pyramid. Default: 0.
|
||||
end_level (int): Index of the end input backbone level (exclusive) to
|
||||
build the feature pyramid. Default: -1, which means the last level.
|
||||
add_extra_convs (bool | str): If bool, it decides whether to add conv
|
||||
layers on top of the original feature maps. Default to False.
|
||||
If True, it is equivalent to `add_extra_convs='on_input'`.
|
||||
If str, it specifies the source feature map of the extra convs.
|
||||
Only the following options are allowed
|
||||
- 'on_input': Last feat map of neck inputs (i.e. backbone feature).
|
||||
- 'on_lateral': Last feature map after lateral convs.
|
||||
- 'on_output': The last output feature map after fpn convs.
|
||||
relu_before_extra_convs (bool): Whether to apply relu before the extra
|
||||
conv. Default: False.
|
||||
no_norm_on_lateral (bool): Whether to apply norm on lateral.
|
||||
Default: False.
|
||||
conv_cfg (dict): Config dict for convolution layer. Default: None.
|
||||
norm_cfg (dict): Config dict for normalization layer. Default: None.
|
||||
act_cfg (dict): Config dict for activation layer in ConvModule.
|
||||
Default: None.
|
||||
upsample_cfg (dict): Config dict for interpolate layer.
|
||||
Default: dict(mode='nearest').
|
||||
init_cfg (dict or list[dict], optional): Initialization config dict.
|
||||
Example:
|
||||
>>> import torch
|
||||
>>> in_channels = [2, 3, 5, 7]
|
||||
>>> scales = [340, 170, 84, 43]
|
||||
>>> inputs = [torch.rand(1, c, s, s)
|
||||
... for c, s in zip(in_channels, scales)]
|
||||
>>> self = FPN(in_channels, 11, len(in_channels)).eval()
|
||||
>>> outputs = self.forward(inputs)
|
||||
>>> for i in range(len(outputs)):
|
||||
... print(f'outputs[{i}].shape = {outputs[i].shape}')
|
||||
outputs[0].shape = torch.Size([1, 11, 340, 340])
|
||||
outputs[1].shape = torch.Size([1, 11, 170, 170])
|
||||
outputs[2].shape = torch.Size([1, 11, 84, 84])
|
||||
outputs[3].shape = torch.Size([1, 11, 43, 43])
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
num_outs,
|
||||
start_level=0,
|
||||
end_level=-1,
|
||||
add_extra_convs=False,
|
||||
relu_before_extra_convs=False,
|
||||
no_norm_on_lateral=False,
|
||||
conv_cfg=None,
|
||||
norm_cfg=None,
|
||||
act_cfg=None,
|
||||
upsample_cfg=dict(mode='nearest')):
|
||||
# init_cfg=dict(
|
||||
# type='Xavier', layer='Conv2d', distribution='uniform')):
|
||||
super(FPN, self).__init__()
|
||||
assert isinstance(in_channels, list)
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.num_ins = len(in_channels)
|
||||
self.num_outs = num_outs
|
||||
self.relu_before_extra_convs = relu_before_extra_convs
|
||||
self.no_norm_on_lateral = no_norm_on_lateral
|
||||
self.upsample_cfg = upsample_cfg.copy()
|
||||
|
||||
if end_level == -1 or end_level == self.num_ins - 1:
|
||||
self.backbone_end_level = self.num_ins
|
||||
assert num_outs >= self.num_ins - start_level
|
||||
else:
|
||||
# if end_level is not the last level, no extra level is allowed
|
||||
self.backbone_end_level = end_level + 1
|
||||
assert end_level < self.num_ins
|
||||
assert num_outs == end_level - start_level + 1
|
||||
self.start_level = start_level
|
||||
self.end_level = end_level
|
||||
self.add_extra_convs = add_extra_convs
|
||||
assert isinstance(add_extra_convs, (str, bool))
|
||||
if isinstance(add_extra_convs, str):
|
||||
# Extra_convs_source choices: 'on_input', 'on_lateral', 'on_output'
|
||||
assert add_extra_convs in ('on_input', 'on_lateral', 'on_output')
|
||||
elif add_extra_convs: # True
|
||||
self.add_extra_convs = 'on_input'
|
||||
|
||||
self.lateral_convs = nn.ModuleList()
|
||||
self.fpn_convs = nn.ModuleList()
|
||||
|
||||
for i in range(self.start_level, self.backbone_end_level):
|
||||
l_conv = ConvModule(
|
||||
in_channels[i],
|
||||
out_channels,
|
||||
1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg if not self.no_norm_on_lateral else None,
|
||||
act_cfg=act_cfg,
|
||||
inplace=False)
|
||||
fpn_conv = ConvModule(
|
||||
out_channels,
|
||||
out_channels,
|
||||
3,
|
||||
padding=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg,
|
||||
inplace=False)
|
||||
|
||||
self.lateral_convs.append(l_conv)
|
||||
self.fpn_convs.append(fpn_conv)
|
||||
|
||||
# add extra conv layers (e.g., RetinaNet)
|
||||
extra_levels = num_outs - self.backbone_end_level + self.start_level
|
||||
if self.add_extra_convs and extra_levels >= 1:
|
||||
for i in range(extra_levels):
|
||||
if i == 0 and self.add_extra_convs == 'on_input':
|
||||
in_channels = self.in_channels[self.backbone_end_level - 1]
|
||||
else:
|
||||
in_channels = out_channels
|
||||
extra_fpn_conv = ConvModule(
|
||||
in_channels,
|
||||
out_channels,
|
||||
3,
|
||||
stride=2,
|
||||
padding=1,
|
||||
conv_cfg=conv_cfg,
|
||||
norm_cfg=norm_cfg,
|
||||
act_cfg=act_cfg,
|
||||
inplace=False)
|
||||
self.fpn_convs.append(extra_fpn_conv)
|
||||
|
||||
def init_weights(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.xavier_uniform_(m.weight, gain=1)
|
||||
if hasattr(m, 'bias') and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, inputs):
|
||||
"""Forward function."""
|
||||
assert len(inputs) == len(self.in_channels)
|
||||
|
||||
# build laterals
|
||||
laterals = [
|
||||
lateral_conv(inputs[i + self.start_level])
|
||||
for i, lateral_conv in enumerate(self.lateral_convs)
|
||||
]
|
||||
|
||||
# build top-down path
|
||||
used_backbone_levels = len(laterals)
|
||||
for i in range(used_backbone_levels - 1, 0, -1):
|
||||
# In some cases, fixing `scale factor` (e.g. 2) is preferred, but
|
||||
# it cannot co-exist with `size` in `F.interpolate`.
|
||||
if 'scale_factor' in self.upsample_cfg:
|
||||
# fix runtime error of "+=" inplace operation in PyTorch 1.10
|
||||
laterals[i - 1] = laterals[i - 1] + F.interpolate(
|
||||
laterals[i], **self.upsample_cfg)
|
||||
else:
|
||||
prev_shape = laterals[i - 1].shape[2:]
|
||||
laterals[i - 1] = laterals[i - 1] + F.interpolate(
|
||||
laterals[i], size=prev_shape, **self.upsample_cfg)
|
||||
|
||||
# build outputs
|
||||
# part 1: from original levels
|
||||
outs = [
|
||||
self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)
|
||||
]
|
||||
# part 2: add extra levels
|
||||
if self.num_outs > len(outs):
|
||||
# use max pool to get more levels on top of outputs
|
||||
# (e.g., Faster R-CNN, Mask R-CNN)
|
||||
if not self.add_extra_convs:
|
||||
for i in range(self.num_outs - used_backbone_levels):
|
||||
outs.append(F.max_pool2d(outs[-1], 1, stride=2))
|
||||
# add conv layers on top of original feature maps (RetinaNet)
|
||||
else:
|
||||
if self.add_extra_convs == 'on_input':
|
||||
extra_source = inputs[self.backbone_end_level - 1]
|
||||
elif self.add_extra_convs == 'on_lateral':
|
||||
extra_source = laterals[-1]
|
||||
elif self.add_extra_convs == 'on_output':
|
||||
extra_source = outs[-1]
|
||||
else:
|
||||
raise NotImplementedError
|
||||
outs.append(self.fpn_convs[used_backbone_levels](extra_source))
|
||||
for i in range(used_backbone_levels + 1, self.num_outs):
|
||||
if self.relu_before_extra_convs:
|
||||
outs.append(self.fpn_convs[i](F.relu(outs[-1])))
|
||||
else:
|
||||
outs.append(self.fpn_convs[i](outs[-1]))
|
||||
return tuple(outs)
|
|
@ -1,8 +1,8 @@
|
|||
#!/usr/bin/env python3
|
||||
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
|
||||
from .boxes import (bbox2result, bbox_overlaps, bboxes_iou, box_cxcywh_to_xyxy,
|
||||
box_xyxy_to_cxcywh, distance2bbox, generalized_box_iou,
|
||||
postprocess)
|
||||
from .boxes import (batched_nms, bbox2result, bbox_overlaps, bboxes_iou,
|
||||
box_cxcywh_to_xyxy, box_xyxy_to_cxcywh, distance2bbox,
|
||||
generalized_box_iou, postprocess)
|
||||
from .generator import MlvlPointGenerator
|
||||
from .matcher import HungarianMatcher
|
||||
from .misc import (accuracy, filter_scores_and_topk, fp16_clamp, interpolate,
|
||||
|
|
|
@ -5,7 +5,7 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import torch
|
||||
import torchvision
|
||||
from torchvision.ops.boxes import box_area
|
||||
from torchvision.ops.boxes import box_area, nms
|
||||
|
||||
from easycv.models.detection.utils.misc import fp16_clamp
|
||||
|
||||
|
@ -408,3 +408,102 @@ def distance2bbox(points, distance, max_shape=None):
|
|||
bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
|
||||
|
||||
return bboxes
|
||||
|
||||
|
||||
def batched_nms(boxes, scores, idxs, nms_cfg, class_agnostic=False):
|
||||
r"""Performs non-maximum suppression in a batched fashion.
|
||||
|
||||
Modified from `torchvision/ops/boxes.py#L39
|
||||
<https://github.com/pytorch/vision/blob/
|
||||
505cd6957711af790211896d32b40291bea1bc21/torchvision/ops/boxes.py#L39>`_.
|
||||
In order to perform NMS independently per class, we add an offset to all
|
||||
the boxes. The offset is dependent only on the class idx, and is large
|
||||
enough so that boxes from different classes do not overlap.
|
||||
|
||||
Note:
|
||||
In v1.4.1 and later, ``batched_nms`` supports skipping the NMS and
|
||||
returns sorted raw results when `nms_cfg` is None.
|
||||
|
||||
Args:
|
||||
boxes (torch.Tensor): boxes in shape (N, 4).
|
||||
scores (torch.Tensor): scores in shape (N, ).
|
||||
idxs (torch.Tensor): each index value correspond to a bbox cluster,
|
||||
and NMS will not be applied between elements of different idxs,
|
||||
shape (N, ).
|
||||
nms_cfg (dict | None): Supports skipping the nms when `nms_cfg`
|
||||
is None, otherwise it should specify nms type and other
|
||||
parameters like `iou_thr`. Possible keys includes the following.
|
||||
|
||||
- iou_thr (float): IoU threshold used for NMS.
|
||||
- split_thr (float): threshold number of boxes. In some cases the
|
||||
number of boxes is large (e.g., 200k). To avoid OOM during
|
||||
training, the users could set `split_thr` to a small value.
|
||||
If the number of boxes is greater than the threshold, it will
|
||||
perform NMS on each group of boxes separately and sequentially.
|
||||
Defaults to 10000.
|
||||
class_agnostic (bool): if true, nms is class agnostic,
|
||||
i.e. IoU thresholding happens over all boxes,
|
||||
regardless of the predicted class.
|
||||
|
||||
Returns:
|
||||
tuple: kept dets and indice.
|
||||
|
||||
- boxes (Tensor): Bboxes with score after nms, has shape
|
||||
(num_bboxes, 5). last dimension 5 arrange as
|
||||
(x1, y1, x2, y2, score)
|
||||
- keep (Tensor): The indices of remaining boxes in input
|
||||
boxes.
|
||||
"""
|
||||
# skip nms when nms_cfg is None
|
||||
if nms_cfg is None:
|
||||
scores, inds = scores.sort(descending=True)
|
||||
boxes = boxes[inds]
|
||||
return torch.cat([boxes, scores[:, None]], -1), inds
|
||||
|
||||
nms_cfg_ = nms_cfg.copy()
|
||||
class_agnostic = nms_cfg_.pop('class_agnostic', class_agnostic)
|
||||
if class_agnostic:
|
||||
boxes_for_nms = boxes
|
||||
else:
|
||||
max_coordinate = boxes.max()
|
||||
offsets = idxs.to(boxes) * (max_coordinate + torch.tensor(1).to(boxes))
|
||||
boxes_for_nms = boxes + offsets[:, None]
|
||||
|
||||
nms_type = nms_cfg_.pop('type', 'nms')
|
||||
nms_op = eval(nms_type)
|
||||
|
||||
split_thr = nms_cfg_.pop('split_thr', 10000)
|
||||
# Won't split to multiple nms nodes when exporting to onnx
|
||||
if boxes_for_nms.shape[0] < split_thr or torch.onnx.is_in_onnx_export():
|
||||
keep = nms(boxes_for_nms, scores, **nms_cfg_)
|
||||
boxes = boxes[keep]
|
||||
|
||||
# This assumes `dets` has arbitrary dimensions where
|
||||
# the last dimension is score.
|
||||
# Currently it supports bounding boxes [x1, y1, x2, y2, score] or
|
||||
# rotated boxes [cx, cy, w, h, angle_radian, score].
|
||||
|
||||
scores = scores[keep]
|
||||
else:
|
||||
max_num = nms_cfg_.pop('max_num', -1)
|
||||
total_mask = scores.new_zeros(scores.size(), dtype=torch.bool)
|
||||
# Some type of nms would reweight the score, such as SoftNMS
|
||||
scores_after_nms = scores.new_zeros(scores.size())
|
||||
for id in torch.unique(idxs):
|
||||
mask = (idxs == id).nonzero(as_tuple=False).view(-1)
|
||||
keep = nms(boxes_for_nms[mask], scores[mask], **nms_cfg_)
|
||||
total_mask[mask[keep]] = True
|
||||
scores_after_nms[mask[keep]] = scores[keep]
|
||||
keep = total_mask.nonzero(as_tuple=False).view(-1)
|
||||
|
||||
scores, inds = scores_after_nms[keep].sort(descending=True)
|
||||
keep = keep[inds]
|
||||
boxes = boxes[keep]
|
||||
|
||||
if max_num > 0:
|
||||
keep = keep[:max_num]
|
||||
boxes = boxes[:max_num]
|
||||
scores = scores[:max_num]
|
||||
|
||||
boxes = torch.cat([boxes, scores[:, None]], -1)
|
||||
return boxes, keep
|
||||
|
|
|
@ -0,0 +1,206 @@
|
|||
# Copyright (c) Alibaba, Inc. and its affiliates.
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from mmcv.parallel import collate, scatter
|
||||
from numpy.testing import assert_array_almost_equal
|
||||
from torchvision.transforms import Compose
|
||||
|
||||
from easycv.datasets.registry import PIPELINES
|
||||
from easycv.datasets.utils import replace_ImageToTensor
|
||||
from easycv.models import build_model
|
||||
from easycv.utils.checkpoint import load_checkpoint
|
||||
from easycv.utils.config_tools import mmcv_config_fromfile
|
||||
from easycv.utils.registry import build_from_cfg
|
||||
|
||||
|
||||
class FCOSTest(unittest.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
|
||||
|
||||
def init_fcos(self, model_path, config_path):
|
||||
self.model_path = model_path
|
||||
|
||||
self.cfg = mmcv_config_fromfile(config_path)
|
||||
|
||||
# modify model_config
|
||||
if self.cfg.model.head.test_cfg.get('max_per_img', None):
|
||||
self.cfg.model.head.test_cfg.max_per_img = 10
|
||||
|
||||
# build model
|
||||
self.model = build_model(self.cfg.model)
|
||||
|
||||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
map_location = 'cpu' if self.device == 'cpu' else 'cuda'
|
||||
self.ckpt = load_checkpoint(
|
||||
self.model, self.model_path, map_location=map_location)
|
||||
|
||||
self.model.to(self.device)
|
||||
self.model.eval()
|
||||
|
||||
self.CLASSES = self.cfg.CLASSES
|
||||
|
||||
def predict(self, imgs):
|
||||
"""Inference image(s) with the detector.
|
||||
Args:
|
||||
model (nn.Module): The loaded detector.
|
||||
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
|
||||
Either image files or loaded images.
|
||||
Returns:
|
||||
If imgs is a list or tuple, the same length list type results
|
||||
will be returned, otherwise return the detection results directly.
|
||||
"""
|
||||
|
||||
if isinstance(imgs, (list, tuple)):
|
||||
is_batch = True
|
||||
else:
|
||||
imgs = [imgs]
|
||||
is_batch = False
|
||||
|
||||
cfg = self.cfg
|
||||
device = next(self.model.parameters()).device # model device
|
||||
|
||||
if isinstance(imgs[0], np.ndarray):
|
||||
cfg = cfg.copy()
|
||||
# set loading pipeline type
|
||||
cfg.data.val.pipeline.insert(
|
||||
0,
|
||||
dict(
|
||||
type='LoadImageFromWebcam',
|
||||
file_client_args=dict(backend='http')))
|
||||
else:
|
||||
cfg = cfg.copy()
|
||||
# set loading pipeline type
|
||||
cfg.data.val.pipeline.insert(
|
||||
0,
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=dict(backend='http')))
|
||||
|
||||
cfg.data.val.pipeline = replace_ImageToTensor(cfg.data.val.pipeline)
|
||||
|
||||
transforms = []
|
||||
for transform in cfg.data.val.pipeline:
|
||||
if 'img_scale' in transform:
|
||||
transform['img_scale'] = tuple(transform['img_scale'])
|
||||
if isinstance(transform, dict):
|
||||
transform = build_from_cfg(transform, PIPELINES)
|
||||
transforms.append(transform)
|
||||
elif callable(transform):
|
||||
transforms.append(transform)
|
||||
else:
|
||||
raise TypeError('transform must be callable or a dict')
|
||||
test_pipeline = Compose(transforms)
|
||||
|
||||
datas = []
|
||||
for img in imgs:
|
||||
# prepare data
|
||||
if isinstance(img, np.ndarray):
|
||||
# directly add img
|
||||
data = dict(img=img)
|
||||
else:
|
||||
# add information into dict
|
||||
data = dict(img_info=dict(filename=img), img_prefix=None)
|
||||
# build the data pipeline
|
||||
data = test_pipeline(data)
|
||||
datas.append(data)
|
||||
|
||||
data = collate(datas, samples_per_gpu=len(imgs))
|
||||
# just get the actual data from DataContainer
|
||||
data['img_metas'] = [
|
||||
img_metas.data[0] for img_metas in data['img_metas']
|
||||
]
|
||||
data['img'] = [img.data[0] for img in data['img']]
|
||||
if next(self.model.parameters()).is_cuda:
|
||||
# scatter to specified GPU
|
||||
data = scatter(data, [device])[0]
|
||||
|
||||
# forward the model
|
||||
with torch.no_grad():
|
||||
results = self.model(mode='test', **data)
|
||||
|
||||
return results
|
||||
|
||||
def test_fcos(self):
|
||||
model_path = 'https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection/fcos/epoch_12.pth'
|
||||
config_path = 'configs/detection/fcos/fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py'
|
||||
img = 'https://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/demo/demo.jpg'
|
||||
self.init_fcos(model_path, config_path)
|
||||
output = self.predict(img)
|
||||
|
||||
self.assertIn('detection_boxes', output)
|
||||
self.assertIn('detection_scores', output)
|
||||
self.assertIn('detection_classes', output)
|
||||
self.assertIn('img_metas', output)
|
||||
self.assertEqual(len(output['detection_boxes'][0]), 10)
|
||||
self.assertEqual(len(output['detection_scores'][0]), 10)
|
||||
self.assertEqual(len(output['detection_classes'][0]), 10)
|
||||
|
||||
print(output['detection_boxes'][0].tolist())
|
||||
print(output['detection_scores'][0].tolist())
|
||||
print(output['detection_classes'][0].tolist())
|
||||
|
||||
self.assertListEqual(
|
||||
output['detection_classes'][0].tolist(),
|
||||
np.array([2, 2, 2, 2, 2, 2, 2, 2, 2, 13], dtype=np.int32).tolist())
|
||||
|
||||
assert_array_almost_equal(
|
||||
output['detection_scores'][0],
|
||||
np.array([
|
||||
0.6641181707382202, 0.6135501265525818, 0.5985610485076904,
|
||||
0.5694775581359863, 0.5586040616035461, 0.5209507942199707,
|
||||
0.5056729912757874, 0.4943872094154358, 0.4850597083568573,
|
||||
0.45443734526634216
|
||||
],
|
||||
dtype=np.float32),
|
||||
decimal=2)
|
||||
|
||||
assert_array_almost_equal(
|
||||
output['detection_boxes'][0],
|
||||
np.array([[
|
||||
295.5196228027344, 116.56035614013672, 380.0883483886719,
|
||||
150.24908447265625
|
||||
],
|
||||
[
|
||||
190.57131958007812, 108.96343231201172,
|
||||
297.7738037109375, 154.69515991210938
|
||||
],
|
||||
[
|
||||
480.5726013183594, 110.4341812133789,
|
||||
522.8551635742188, 129.9452667236328
|
||||
],
|
||||
[
|
||||
431.1232604980469, 105.17676544189453,
|
||||
483.89617919921875, 131.85870361328125
|
||||
],
|
||||
[
|
||||
398.6544494628906, 110.90837860107422,
|
||||
432.6370849609375, 132.89173889160156
|
||||
],
|
||||
[
|
||||
609.3126831054688, 111.62432861328125,
|
||||
635.4577026367188, 137.03529357910156
|
||||
],
|
||||
[
|
||||
98.66332244873047, 89.88417053222656,
|
||||
118.9398422241211, 101.25397491455078
|
||||
],
|
||||
[
|
||||
167.9045867919922, 109.57560729980469,
|
||||
209.74375915527344, 139.98898315429688
|
||||
],
|
||||
[
|
||||
591.0496826171875, 110.55867767333984,
|
||||
619.4395751953125, 126.65755462646484
|
||||
],
|
||||
[
|
||||
218.92051696777344, 177.0509033203125,
|
||||
455.8321838378906, 385.0356140136719
|
||||
]]),
|
||||
decimal=1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in New Issue