mirror of https://github.com/alibaba/EasyCV.git
parent
db33ced143
commit
8c3ba59aaf
|
@ -49,14 +49,14 @@ img_norm_cfg = dict(
|
|||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='MMMosaic', img_scale='${img_scale}', pad_val=114.0),
|
||||
dict(type='MMMosaic', img_scale=tuple(img_scale), pad_val=114.0),
|
||||
dict(
|
||||
type='MMRandomAffine',
|
||||
scaling_ratio_range='${scale_ratio}',
|
||||
border=['-${img_scale}[0] // 2', '-${img_scale}[1] // 2']),
|
||||
scaling_ratio_range=scale_ratio,
|
||||
border=[img_scale[0] // 2, img_scale[1] // 2]),
|
||||
dict(
|
||||
type='MMMixUp', # s m x l; tiny nano will detele
|
||||
img_scale='${img_scale}',
|
||||
img_scale=tuple(img_scale),
|
||||
ratio_range=(0.8, 1.6),
|
||||
pad_val=114.0),
|
||||
dict(
|
||||
|
@ -70,45 +70,43 @@ train_pipeline = [
|
|||
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
|
||||
dict(
|
||||
type='MMNormalize',
|
||||
mean='${img_norm_cfg.mean}',
|
||||
std='${img_norm_cfg.std}',
|
||||
to_rgb='${img_norm_cfg.to_rgb}'),
|
||||
mean=img_norm_cfg['mean'],
|
||||
std=img_norm_cfg['std'],
|
||||
to_rgb=img_norm_cfg['to_rgb']),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='MMResize', img_scale='${img_scale}', keep_ratio=True),
|
||||
dict(type='MMResize', img_scale=img_scale, keep_ratio=True),
|
||||
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
|
||||
dict(
|
||||
type='MMNormalize',
|
||||
mean='${img_norm_cfg.mean}',
|
||||
std='${img_norm_cfg.std}',
|
||||
to_rgb='${img_norm_cfg.to_rgb}'),
|
||||
mean=img_norm_cfg['mean'],
|
||||
std=img_norm_cfg['std'],
|
||||
to_rgb=img_norm_cfg['to_rgb']),
|
||||
dict(type='DefaultFormatBundle'),
|
||||
dict(type='Collect', keys=['img'])
|
||||
]
|
||||
|
||||
train_path = 'data/coco/train2017.manifest'
|
||||
val_path = 'data/coco/val2017.manifest'
|
||||
|
||||
train_dataset = dict(
|
||||
type='DetImagesMixDataset',
|
||||
data_source=dict(type='DetSourcePAI', path=train_path, classes=CLASSES),
|
||||
pipeline=train_pipeline,
|
||||
dynamic_scale=tuple(img_scale))
|
||||
|
||||
val_dataset = dict(
|
||||
type='DetImagesMixDataset',
|
||||
imgs_per_gpu=2,
|
||||
data_source=dict(type='DetSourcePAI', path=val_path, classes=CLASSES),
|
||||
pipeline=test_pipeline,
|
||||
dynamic_scale=None,
|
||||
label_padding=False)
|
||||
|
||||
data = dict(
|
||||
imgs_per_gpu=16,
|
||||
workers_per_gpu=4,
|
||||
train=dict(
|
||||
type='DetImagesMixDataset',
|
||||
data_source=dict(
|
||||
type='DetSourcePAI',
|
||||
path='data/coco/train2017.manifest',
|
||||
classes='${CLASSES}'),
|
||||
pipeline='${train_pipeline}',
|
||||
dynamic_scale='${img_scale}'),
|
||||
val=dict(
|
||||
type='DetImagesMixDataset',
|
||||
imgs_per_gpu=2,
|
||||
data_source=dict(
|
||||
type='DetSourcePAI',
|
||||
path='data/coco/val2017.manifest',
|
||||
classes='${CLASSES}'),
|
||||
pipeline='${test_pipeline}',
|
||||
dynamic_scale=None,
|
||||
label_padding=False))
|
||||
imgs_per_gpu=16, workers_per_gpu=4, train=train_dataset, val=val_dataset)
|
||||
|
||||
# additional hooks
|
||||
interval = 10
|
||||
|
@ -120,14 +118,14 @@ custom_hooks = [
|
|||
priority=48),
|
||||
dict(
|
||||
type='SyncRandomSizeHook',
|
||||
ratio_range='${random_size}',
|
||||
img_scale='${img_scale}',
|
||||
interval='${interval}',
|
||||
ratio_range=random_size,
|
||||
img_scale=img_scale,
|
||||
interval=interval,
|
||||
priority=48),
|
||||
dict(
|
||||
type='SyncNormHook',
|
||||
num_last_epochs=15,
|
||||
interval='${interval}',
|
||||
interval=interval,
|
||||
priority=48)
|
||||
]
|
||||
|
||||
|
@ -135,23 +133,23 @@ custom_hooks = [
|
|||
vis_num = 20
|
||||
score_thr = 0.5
|
||||
eval_config = dict(
|
||||
interval='${interval}',
|
||||
interval=interval,
|
||||
gpu_collect=False,
|
||||
visualization_config=dict(
|
||||
vis_num='${vis_num}',
|
||||
score_thr='${score_thr}',
|
||||
vis_num=vis_num,
|
||||
score_thr=score_thr,
|
||||
) # show by TensorboardLoggerHookV2
|
||||
)
|
||||
|
||||
eval_pipelines = [
|
||||
dict(
|
||||
mode='test',
|
||||
data='${data.val}',
|
||||
data=val_dataset,
|
||||
evaluators=[dict(type='CocoDetectionEvaluator', classes=CLASSES)],
|
||||
)
|
||||
]
|
||||
|
||||
checkpoint_config = dict(interval='${interval}')
|
||||
checkpoint_config = dict(interval=interval)
|
||||
# optimizer
|
||||
# basic_lr_per_img = 0.01 / 64.0
|
||||
optimizer = dict(
|
||||
|
|
|
@ -247,10 +247,10 @@ def _export_yolox(model, cfg, filename):
|
|||
|
||||
if hasattr(cfg, 'export'):
|
||||
export_type = getattr(cfg.export, 'export_type', 'raw')
|
||||
default_export_type_list = ['raw', 'jit', 'blade']
|
||||
default_export_type_list = ['raw', 'jit', 'blade', 'onnx']
|
||||
if export_type not in default_export_type_list:
|
||||
logging.warning(
|
||||
'YOLOX-PAI only supports the export type as [raw,jit,blade], otherwise we use raw as default'
|
||||
'YOLOX-PAI only supports the export type as [raw,jit,blade,onnx], otherwise we use raw as default'
|
||||
)
|
||||
export_type = 'raw'
|
||||
|
||||
|
@ -276,7 +276,7 @@ def _export_yolox(model, cfg, filename):
|
|||
len(img_scale) == 2
|
||||
), 'Export YoloX predictor config contains img_scale must be (int, int) tuple!'
|
||||
|
||||
input = 255 * torch.rand((batch_size, 3) + img_scale)
|
||||
input = 255 * torch.rand((batch_size, 3) + tuple(img_scale))
|
||||
|
||||
# assert use_trt_efficientnms only happens when static_opt=True
|
||||
if static_opt is not True:
|
||||
|
@ -355,6 +355,31 @@ def _export_yolox(model, cfg, filename):
|
|||
|
||||
json.dump(config, ofile)
|
||||
|
||||
if export_type == 'onnx':
|
||||
|
||||
with io.open(
|
||||
filename + '.config.json' if filename.endswith('onnx')
|
||||
else filename + '.onnx.config.json', 'w') as ofile:
|
||||
config = dict(
|
||||
model=cfg.model,
|
||||
export=cfg.export,
|
||||
test_pipeline=cfg.test_pipeline,
|
||||
classes=cfg.CLASSES)
|
||||
|
||||
json.dump(config, ofile)
|
||||
|
||||
torch.onnx.export(
|
||||
model,
|
||||
input.to(device),
|
||||
filename if filename.endswith('onnx') else filename +
|
||||
'.onnx',
|
||||
export_params=True,
|
||||
opset_version=12,
|
||||
do_constant_folding=True,
|
||||
input_names=['input'],
|
||||
output_names=['output'],
|
||||
)
|
||||
|
||||
if export_type == 'jit':
|
||||
with io.open(filename + '.jit', 'wb') as ofile:
|
||||
torch.jit.save(yolox_trace, ofile)
|
||||
|
|
|
@ -23,6 +23,12 @@ except Exception:
|
|||
from .interface import PredictorInterface
|
||||
|
||||
|
||||
# 将张量转化为ndarray格式
|
||||
def onnx_to_numpy(tensor):
|
||||
return tensor.detach().cpu().numpy(
|
||||
) if tensor.requires_grad else tensor.cpu().numpy()
|
||||
|
||||
|
||||
class DetInputProcessor(InputProcessor):
|
||||
|
||||
def build_processor(self):
|
||||
|
@ -349,9 +355,11 @@ class YoloXPredictor(DetectionPredictor):
|
|||
self.model_type = 'jit'
|
||||
elif model_path.endswith('blade'):
|
||||
self.model_type = 'blade'
|
||||
elif model_path.endswith('onnx'):
|
||||
self.model_type = 'onnx'
|
||||
else:
|
||||
self.model_type = 'raw'
|
||||
assert self.model_type in ['raw', 'jit', 'blade']
|
||||
assert self.model_type in ['raw', 'jit', 'blade', 'onnx']
|
||||
|
||||
if self.model_type == 'blade' or self.use_trt_efficientnms:
|
||||
import torch_blade
|
||||
|
@ -381,8 +389,16 @@ class YoloXPredictor(DetectionPredictor):
|
|||
|
||||
def _build_model(self):
|
||||
if self.model_type != 'raw':
|
||||
with io.open(self.model_path, 'rb') as infile:
|
||||
model = torch.jit.load(infile, self.device)
|
||||
if self.model_type != 'onnx':
|
||||
with io.open(self.model_path, 'rb') as infile:
|
||||
model = torch.jit.load(infile, self.device)
|
||||
else:
|
||||
import onnxruntime
|
||||
if onnxruntime.get_device() == 'GPU':
|
||||
model = onnxruntime.InferenceSession(
|
||||
self.model_path, providers=['CUDAExecutionProvider'])
|
||||
else:
|
||||
model = onnxruntime.InferenceSession(self.model_path)
|
||||
else:
|
||||
from easycv.utils.misc import reparameterize_models
|
||||
model = super()._build_model()
|
||||
|
@ -394,8 +410,9 @@ class YoloXPredictor(DetectionPredictor):
|
|||
If the model is not loaded from a configuration file, e.g. torch jit model, you need to reimplement it.
|
||||
"""
|
||||
model = self._build_model()
|
||||
model.to(self.device)
|
||||
model.eval()
|
||||
if self.model_type != 'onnx':
|
||||
model.to(self.device)
|
||||
model.eval()
|
||||
if self.model_type == 'raw':
|
||||
load_checkpoint(model, self.model_path, map_location='cpu')
|
||||
return model
|
||||
|
@ -406,7 +423,15 @@ class YoloXPredictor(DetectionPredictor):
|
|||
"""
|
||||
if self.model_type != 'raw':
|
||||
with torch.no_grad():
|
||||
outputs = self.model(inputs['img'])
|
||||
if self.model_type != 'onnx':
|
||||
outputs = self.model(inputs['img'])
|
||||
else:
|
||||
outputs = self.model.run(
|
||||
None, {
|
||||
self.model.get_inputs()[0].name:
|
||||
onnx_to_numpy(inputs['img'])
|
||||
})[0]
|
||||
outputs = torch.from_numpy(outputs)
|
||||
outputs = {'results': outputs} # convert to dict format
|
||||
else:
|
||||
outputs = super().model_forward(inputs)
|
||||
|
|
|
@ -13,6 +13,7 @@ lmdb
|
|||
numba
|
||||
numpy
|
||||
nuscenes-devkit
|
||||
onnxruntime
|
||||
opencv-python
|
||||
oss2
|
||||
packaging
|
||||
|
|
|
@ -83,12 +83,12 @@ class PredictTest(unittest.TestCase):
|
|||
oss_config = get_oss_config()
|
||||
ak_id = oss_config['ak_id']
|
||||
ak_secret = oss_config['ak_secret']
|
||||
hosts = oss_config['hosts'] + ['oss-cn-hangzhou.aliyuncs.com']
|
||||
hosts = oss_config['hosts']
|
||||
hosts = ','.join(_ for _ in hosts)
|
||||
buckets = oss_config['buckets'] + ['easycv']
|
||||
buckets = oss_config['buckets']
|
||||
buckets = ','.join(_ for _ in buckets)
|
||||
|
||||
input_file = 'oss://easycv/data/small_test_data/test_images/http_image_list.txt'
|
||||
input_file = 'oss://pai-vision-data-hz/unittest/local_backup/easycv_nfs/data/test_images/http_image_list.txt'
|
||||
output_file = tempfile.NamedTemporaryFile('w').name
|
||||
cmd = f'PYTHONPATH=. python tools/predict.py \
|
||||
--input_file {input_file} \
|
||||
|
|
Loading…
Reference in New Issue