fix multi-process reading of detection datasource and accelerate data preprocessing (#23)

* fix multi-process reading of detection datasource and accelerate data preprocessing
pull/38/head
Cathy0908 2022-04-26 14:03:28 +08:00 committed by GitHub
parent 81b91086eb
commit c6ad4c7858
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 312 additions and 216 deletions

View File

@ -0,0 +1,188 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import functools
import logging
import time
from abc import abstractmethod
from multiprocessing import Pool, cpu_count
import cv2
import numpy as np
from mmcv.runner.dist_utils import get_dist_info
from PIL import Image
from tqdm import tqdm
from easycv.file import io
from easycv.utils.constant import MAX_READ_IMAGE_TRY_TIMES
def load_image(img_path):
result = {}
try_cnt = 0
img = None
while try_cnt < MAX_READ_IMAGE_TRY_TIMES:
try:
with io.open(img_path, 'rb') as infile:
# cv2.imdecode may corrupt when the img is broken
image = Image.open(infile)
img = cv2.cvtColor(
np.asarray(image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
assert img is not None, 'Image load error, try %s : %s' % (
try_cnt, img_path)
break
except:
time.sleep(2)
try_cnt += 1
if img is None:
raise ValueError('Read Image Times Out: ' + img_path)
result['img'] = img.astype(np.float32)
result['img_shape'] = img.shape # h, w, c
result['ori_img_shape'] = img.shape
return result
def build_sample(source_item, classes, parse_fn, load_img):
"""Build sample info from source item.
Args:
source_item: item of source iterator
classes: classes list
parse_fn: parse function to parse source_item, only accepts two params: source_item and classes
load_img: load image or not, if true, cache all images in memory at init
"""
result_dict = parse_fn(source_item, classes)
if load_img:
result_dict.update(load_image(result_dict['filename']))
return result_dict
class DetSourceBase(object):
def __init__(self,
classes=[],
cache_at_init=False,
cache_on_the_fly=False,
parse_fn=None,
num_processes=int(cpu_count() / 2),
**kwargs):
"""
Args:
classes: classes list
cache_at_init: if set True, will cache in memory in __init__ for faster training
cache_on_the_fly: if set True, will cache in memroy during training
parse_fn: parse function to parse source iterator, parse_fn should return dict containing:
gt_bboxes(np.ndarry): Float32 numpy array of shape [num_boxes, 4] and
format [ymin, xmin, ymax, xmax] in absolute image coordinates.
gt_labels(np.ndarry): Integer numpy array of shape [num_boxes]
containing 1-indexed detection classes for the boxes.
filename(str): absolute file path.
num_processes: number of processes to parse samples
"""
self.CLASSES = classes
self.rank, self.world_size = get_dist_info()
self.cache_at_init = cache_at_init
self.cache_on_the_fly = cache_on_the_fly
self.num_processes = num_processes
if self.cache_at_init and self.cache_on_the_fly:
raise ValueError(
'Only one of `cache_on_the_fly` and `cache_at_init` can be True!'
)
source_iter = self.get_source_iterator()
process_fn = functools.partial(
build_sample,
parse_fn=parse_fn,
classes=self.CLASSES,
load_img=cache_at_init == True,
)
self.samples_list = self.build_samples(
source_iter, process_fn=process_fn)
self.num_samples = self.get_length()
# An error will be raised if failed to load _max_retry_num times in a row
self._max_retry_num = self.num_samples
self._retry_count = 0
@abstractmethod
def get_source_iterator():
"""Return data list iterator, source iterator will be passed to parse_fn,
and parse_fn will receive params of item of source iter and classes for parsing.
What does parse_fn need, what does source iterator returns.
"""
raise NotImplementedError
def build_samples(self, iterable, process_fn):
samples_list = []
with Pool(processes=self.num_processes) as p:
with tqdm(total=len(iterable), desc='Scanning images') as pbar:
for _, result_dict in enumerate(
p.imap_unordered(process_fn, iterable)):
if result_dict:
samples_list.append(result_dict)
pbar.update()
return samples_list
def get_length(self):
return len(self.samples_list)
def __len__(self):
return self.get_length()
def get_ann_info(self, idx):
"""
Get raw annotation info, include bounding boxes, labels and so on.
`bboxes` format is as [x1, y1, x2, y2] without normalization.
"""
sample_info = self.samples_list[idx]
groundtruth_is_crowd = sample_info.get('groundtruth_is_crowd', None)
if groundtruth_is_crowd is None:
groundtruth_is_crowd = np.zeros_like(sample_info['gt_labels'])
annotations = {
'bboxes': sample_info['gt_bboxes'],
'labels': sample_info['gt_labels'],
'groundtruth_is_crowd': groundtruth_is_crowd
}
return annotations
def post_process_fn(self, result_dict):
if result_dict.get('img_fields', None) is None:
result_dict['img_fields'] = ['img']
if result_dict.get('bbox_fields', None) is None:
result_dict['bbox_fields'] = ['gt_bboxes']
return result_dict
def get_sample(self, idx):
result_dict = self.samples_list[idx]
load_success = True
try:
if not self.cache_at_init and result_dict.get('img', None) is None:
result_dict.update(load_image(result_dict['filename']))
if self.cache_on_the_fly:
self.samples_list[idx] = result_dict
result_dict = self.post_process_fn(result_dict)
# load success,reset to 0
self._retry_count = 0
except Exception as e:
logging.error(e)
load_success = False
if not load_success:
logging.warning(
'Something wrong with current sample %s,Try load next sample...'
% result_dict.get('filename', ''))
self._retry_count += 1
if self._retry_count >= self._max_retry_num:
raise ValueError('All samples failed to load!')
result_dict = self.get_sample((idx + 1) % self.num_samples)
return result_dict

View File

@ -1,13 +1,13 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import json
import logging
from multiprocessing import cpu_count
import numpy as np
from mmcv.runner.dist_utils import get_dist_info
from easycv.datasets.detection.data_sources.base import DetSourceBase
from easycv.datasets.registry import DATASOURCES
from easycv.file import io
from .voc import DetSourceVOC
def get_prior_task_id(keys):
@ -44,7 +44,7 @@ def is_itag_v2(row):
return False
def parser_manifest_row_str(row_str):
def parser_manifest_row_str(row_str, classes):
row = json.loads(row_str.strip())
_is_itag_v2 = is_itag_v2(row)
@ -77,7 +77,7 @@ def parser_manifest_row_str(row_str):
if not ann_json:
return parse_results
bboxes, class_names = [], []
bboxes, gt_labels = [], []
for result in ann_json['results']:
if result['type'] != 'image':
continue
@ -100,7 +100,7 @@ def parser_manifest_row_str(row_str):
raise ValueError(
'Not support multi label, get class name %s!' %
class_name)
class_names.append(class_name[0])
gt_labels.append(classes.index(class_name[0]))
else:
if obj['type'] != 'image/rectangleLabel':
logging.warning(
@ -113,18 +113,18 @@ def parser_manifest_row_str(row_str):
bnd = [x, y, x + w, y + h]
class_name = obj['labels'][0]
bboxes.append(bnd)
class_names.append(class_name)
gt_labels.append(classes.index(class_name))
break
parse_results['gt_bboxes'] = bboxes
parse_results['class_names'] = class_names
parse_results['filename'] = img_url
parse_results['gt_bboxes'] = np.array(bboxes, dtype=np.float32)
parse_results['gt_labels'] = np.array(gt_labels, dtype=np.int64)
return parse_results
@DATASOURCES.register_module
class DetSourcePAI(DetSourceVOC):
class DetSourcePAI(DetSourceBase):
"""
data format please refer to: https://help.aliyun.com/document_detail/311173.html
"""
@ -134,6 +134,8 @@ class DetSourcePAI(DetSourceVOC):
classes=[],
cache_at_init=False,
cache_on_the_fly=False,
parse_fn=parser_manifest_row_str,
num_processes=int(cpu_count() / 2),
**kwargs):
"""
Args:
@ -141,30 +143,19 @@ class DetSourcePAI(DetSourceVOC):
classes: classes list
cache_at_init: if set True, will cache in memory in __init__ for faster training
cache_on_the_fly: if set True, will cache in memroy during training
parse_fn: parse function to parse item of source iterator
num_processes: number of processes to parse samples
"""
self.CLASSES = classes
self.rank, self.world_size = get_dist_info()
self.manifest_path = path
self.cache_at_init = cache_at_init
self.cache_on_the_fly = cache_on_the_fly
if self.cache_at_init and self.cache_on_the_fly:
raise ValueError(
'Only one of `cache_on_the_fly` and `cache_at_init` can be True!'
)
self.manifest_path = path
super(DetSourcePAI, self).__init__(
classes=classes,
cache_at_init=cache_at_init,
cache_on_the_fly=cache_on_the_fly,
parse_fn=parse_fn,
num_processes=num_processes)
def get_source_iterator(self):
with io.open(self.manifest_path, 'r') as f:
rows = f.read().splitlines()
self.samples_list = self.build_samples(rows)
def get_source_info(self, row_str):
source_info = parser_manifest_row_str(row_str)
source_info['gt_bboxes'] = np.array(
source_info['gt_bboxes'], dtype=np.float32)
source_info['gt_labels'] = np.array([
self.CLASSES.index(class_name)
for class_name in source_info['class_names']
],
dtype=np.int64)
return source_info
return rows

View File

@ -1,20 +1,45 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import functools
import logging
import os
from multiprocessing import cpu_count
import numpy as np
from easycv.datasets.registry import DATASOURCES
from easycv.file import io
from easycv.utils.bbox_util import batched_cxcywh2xyxy_with_shape
from .voc import DetSourceVOC
from .base import DetSourceBase
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
label_formats = ['.txt']
def parse_raw(source_iter, classes=None, delimeter=' '):
img_path, label_path = source_iter
source_info = {'filename': img_path}
with io.open(label_path, 'r') as f:
labels_and_boxes = np.array(
[line.split(delimeter) for line in f.read().splitlines()])
if not len(labels_and_boxes):
return source_info
labels = labels_and_boxes[:, 0]
bboxes = labels_and_boxes[:, 1:]
source_info.update({
'gt_bboxes': np.array(bboxes, dtype=np.float32),
'gt_labels': labels.astype(np.int64)
})
return source_info
@DATASOURCES.register_module
class DetSourceRaw(DetSourceVOC):
class DetSourceRaw(DetSourceBase):
"""
data dir is as follows:
```
@ -45,24 +70,39 @@ class DetSourceRaw(DetSourceVOC):
def __init__(self,
img_root_path,
label_root_path,
classes=[],
cache_at_init=False,
cache_on_the_fly=False,
delimeter=' ',
parse_fn=parse_raw,
num_processes=int(cpu_count() / 2),
**kwargs):
"""
Args:
img_root_path: images dir path
label_root_path: labels dir path
classes(list, optional): classes list
cache_at_init: if set True, will cache in memory in __init__ for faster training
cache_on_the_fly: if set True, will cache in memroy during training
delimeter: delimeter of txt file
parse_fn: parse function to parse item of source iterator
num_processes: number of processes to parse samples
"""
self.cache_on_the_fly = cache_on_the_fly
self.cache_at_init = cache_at_init
self.delimeter = delimeter
self.delimeter = delimeter
self.img_root_path = img_root_path
self.label_root_path = label_root_path
parse_fn = functools.partial(parse_fn, delimeter=delimeter)
super(DetSourceRaw, self).__init__(
classes=classes,
cache_at_init=cache_at_init,
cache_on_the_fly=cache_on_the_fly,
parse_fn=parse_fn,
num_processes=num_processes)
def get_source_iterator(self):
self.img_files = [
os.path.join(self.img_root_path, i)
for i in io.listdir(self.img_root_path, recursive=True)
@ -90,48 +130,11 @@ class DetSourceRaw(DetSourceVOC):
assert len(
self.img_files) > 0, 'No samples found in %s' % self.img_root_path
# TODO: filter bad sample
self.samples_list = self.build_samples(
list(zip(self.img_files, self.label_files)))
return list(zip(self.img_files, self.label_files))
def get_source_info(self, img_and_label):
img_path = img_and_label[0]
label_path = img_and_label[1]
def post_process_fn(self, result_dict):
result_dict = super(DetSourceRaw, self).post_process_fn(result_dict)
source_info = {'filename': img_path}
with io.open(label_path, 'r') as f:
labels_and_boxes = np.array(
[line.split(self.delimeter) for line in f.read().splitlines()])
if not len(labels_and_boxes):
return {}
labels = labels_and_boxes[:, 0]
bboxes = labels_and_boxes[:, 1:]
source_info.update({
'gt_bboxes': np.array(bboxes, dtype=np.float32),
'gt_labels': labels.astype(np.int64)
})
return source_info
def _build_sample_from_source_info(self, source_info):
if 'filename' not in source_info:
return {}
result_dict = source_info
img_info = self.load_image(source_info['filename'])
result_dict.update(img_info)
result_dict.update({
'img_fields': ['img'],
'bbox_fields': ['gt_bboxes']
})
# shape: h, w
result_dict['gt_bboxes'] = batched_cxcywh2xyxy_with_shape(
result_dict['gt_bboxes'], shape=img_info['img_shape'][:2])
result_dict['gt_bboxes'], shape=result_dict['img_shape'][:2])
return result_dict

View File

@ -1,24 +1,20 @@
# Copyright (c) Alibaba, Inc. and its affiliates.
import logging
import os
import time
import xml.etree.ElementTree as ET
from multiprocessing import Pool, cpu_count
from multiprocessing import cpu_count
import cv2
import numpy as np
from mmcv.runner.dist_utils import get_dist_info
from PIL import Image
from tqdm import tqdm
from easycv.datasets.detection.data_sources.base import DetSourceBase
from easycv.datasets.registry import DATASOURCES
from easycv.file import io
from easycv.utils.constant import MAX_READ_IMAGE_TRY_TIMES
img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
def parse_xml(xml_path, classes):
def parse_xml(source_item, classes):
img_path, xml_path = source_item
with io.open(xml_path, 'r') as f:
tree = ET.parse(f)
root = tree.getroot()
@ -51,14 +47,15 @@ def parse_xml(xml_path, classes):
img_info = {
'gt_bboxes': np.array(gt_bboxes, dtype=np.float32),
'gt_labels': np.array(gt_labels, dtype=np.int64)
'gt_labels': np.array(gt_labels, dtype=np.int64),
'filename': img_path,
}
return img_info
@DATASOURCES.register_module
class DetSourceVOC(object):
class DetSourceVOC(DetSourceBase):
"""
data dir is as follows:
```
@ -98,6 +95,8 @@ class DetSourceVOC(object):
cache_on_the_fly=False,
img_suffix='.jpg',
label_suffix='.xml',
parse_fn=parse_xml,
num_processes=int(cpu_count() / 2),
**kwargs):
"""
Args:
@ -111,16 +110,24 @@ class DetSourceVOC(object):
cache_on_the_fly: if set True, will cache in memroy during training
img_suffix: suffix of image file
label_suffix: suffix of label file
parse_fn: parse function to parse item of source iterator
num_processes: number of processes to parse samples
"""
self.CLASSES = classes
self.rank, self.world_size = get_dist_info()
self.path = path
self.img_root_path = img_root_path
self.label_root_path = label_root_path
self.cache_at_init = cache_at_init
self.cache_on_the_fly = cache_on_the_fly
self.img_suffix = img_suffix
self.label_suffix = label_suffix
super(DetSourceVOC, self).__init__(
classes=classes,
cache_at_init=cache_at_init,
cache_on_the_fly=cache_on_the_fly,
parse_fn=parse_fn,
num_processes=num_processes)
if not img_root_path:
def get_source_iterator(self):
if not self.img_root_path:
self.img_root_path = os.path.join(
self.path.split('ImageSets/Main')[0], 'JPEGImages')
if not self.label_root_path:
@ -134,128 +141,10 @@ class DetSourceVOC(object):
for id_line in id_lines:
img_id = id_line.strip().split(' ')[0]
img_path = os.path.join(self.img_root_path,
img_id + img_suffix)
img_id + self.img_suffix)
imgs_path_list.append(img_path)
label_path = os.path.join(self.label_root_path,
img_id + label_suffix)
img_id + self.label_suffix)
labels_path_list.append(label_path)
# TODO: filter bad sample
self.samples_list = self.build_samples(
list(zip(imgs_path_list, labels_path_list)))
def get_source_info(self, img_and_label):
img_path = img_and_label[0]
label_path = img_and_label[1]
source_info = parse_xml(label_path, self.CLASSES)
source_info.update({'filename': img_path})
return source_info
def _build_sample_from_source_info(self, source_info):
if 'filename' not in source_info:
return {}
result_dict = source_info
img_info = self.load_image(source_info['filename'])
result_dict.update(img_info)
result_dict.update({
'img_fields': ['img'],
'bbox_fields': ['gt_bboxes']
})
return result_dict
def build_sample(self, data):
result_dict = self.get_source_info(data)
if self.cache_at_init:
result_dict = self._build_sample_from_source_info(result_dict)
return result_dict
def build_samples(self, iterable):
samples_list = []
proc_num = int(cpu_count() / 2)
with Pool(processes=proc_num) as p:
with tqdm(total=len(iterable), desc='Scanning images') as pbar:
for _, result_dict in enumerate(
p.imap_unordered(self.build_sample, iterable)):
if result_dict:
samples_list.append(result_dict)
pbar.update()
return samples_list
def load_image(self, img_path):
result = {}
try_cnt = 0
img = None
while try_cnt < MAX_READ_IMAGE_TRY_TIMES:
try:
with io.open(img_path, 'rb') as infile:
# cv2.imdecode may corrupt when the img is broken
image = Image.open(infile)
img = cv2.cvtColor(
np.asarray(image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
assert img is not None, 'Image load error, try %s : %s' % (
try_cnt, img_path)
break
except:
time.sleep(2)
try_cnt += 1
if img is None:
raise ValueError('Read Image Times Out: ' + img_path)
result['img'] = img.astype(np.float32)
result['img_shape'] = img.shape # h, w, c
result['ori_img_shape'] = img.shape
return result
def get_length(self):
return len(self.samples_list)
def __len__(self):
return self.get_length()
def get_ann_info(self, idx):
"""
Get raw annotation info, include bounding boxes, labels and so on.
`bboxes` format is as [x1, y1, x2, y2] without normalization.
"""
sample_info = self.samples_list[idx]
if sample_info.get('gt_labels', None) is None:
sample_info = self._build_sample_from_source_info(sample_info)
if self.cache_at_init or self.cache_on_the_fly:
self.samples_list[idx] = sample_info
annotations = {
'bboxes': sample_info['gt_bboxes'],
'labels': sample_info['gt_labels'],
'groundtruth_is_crowd': np.zeros_like(sample_info['gt_labels'])
}
return annotations
def get_sample(self, idx):
result_dict = self.samples_list[idx]
try:
if result_dict.get('img', None) is None:
result_dict = self._build_sample_from_source_info(result_dict)
if self.cache_at_init or self.cache_on_the_fly:
self.samples_list[idx] = result_dict
except Exception as e:
logging.warning(e)
if not result_dict:
logging.warning(
'Something wrong with current sample %s,Try load next sample...'
% result_dict.get('filename', ''))
result_dict = self.get_sample(idx + 1)
return result_dict
return list(zip(imgs_path_list, labels_path_list))

View File

@ -25,6 +25,9 @@ class SourceConcat(object):
def get_length(self):
return self.cumsum_length_list[-1]
def __len__(self):
return self.get_length()
def get_sample(self, idx):
dataset_idx = bisect.bisect_right(self.cumsum_length_list, idx)
if dataset_idx == 0:

View File

@ -42,7 +42,7 @@ class DetSourceRawTest(unittest.TestCase):
data_source.samples_list[exclude_idx[i]])
length = data_source.get_length()
self.assertEqual(length, 126)
self.assertEqual(length, 128)
exists = False
for idx in range(length):

View File

@ -90,6 +90,25 @@ class DetSourceVOCTest(unittest.TestCase):
cache_on_the_fly=True)
self._base_test(data_source)
def test_max_retry_num(self):
data_root = DET_DATA_SMALL_VOC_LOCAL
data_source = DetSourceVOC(
path=os.path.join(data_root, 'ImageSets/Main/train_20.txt'),
classes=VOC_CLASSES,
img_root_path=os.path.join(data_root, 'fault_path'),
label_root_path=os.path.join(data_root, 'Annotations'))
data_source._max_retry_num = 2
num_samples = data_source.num_samples
with self.assertRaises(ValueError) as cm:
for idx in range(num_samples - 1, num_samples * 2):
_ = data_source.get_sample(idx)
exception = cm.exception
self.assertEqual(num_samples, 20)
self.assertEqual(data_source._retry_count, 2)
self.assertEqual(exception.args[0], 'All samples failed to load!')
if __name__ == '__main__':
unittest.main()

View File

@ -15,7 +15,7 @@ sys.path.append(
osp.join(os.path.dirname(os.path.dirname(__file__)), '../')))
import time
import cv2
import requests
import torch
from mmcv.runner import init_dist
@ -33,6 +33,9 @@ from easycv.utils.config_tools import traverse_replace
from easycv.utils.config_tools import (CONFIG_TEMPLATE_ZOO,
mmcv_config_fromfile, rebuild_config)
# refer to: https://github.com/open-mmlab/mmdetection/pull/6867
cv2.setNumThreads(0)
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')