# Copyright (c) Alibaba, Inc. and its affiliates. """ This model is taken from https://github.com/SamsungLabs/EdgeViTs """ from collections import OrderedDict from functools import partial import torch import torch.nn as nn from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from easycv.models.utils import ConvMlp, Mlp from easycv.utils.checkpoint import load_checkpoint from easycv.utils.logger import get_root_logger from ..registry import BACKBONES class GlobalSparseAttn(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) # self.upsample = nn.Upsample(scale_factor=sr_ratio, mode='nearest') self.sr = sr_ratio if self.sr > 1: self.sampler = nn.AvgPool2d(1, sr_ratio) kernel_size = sr_ratio self.LocalProp = nn.ConvTranspose2d( dim, dim, kernel_size, stride=sr_ratio, groups=dim) self.norm = nn.LayerNorm(dim) else: self.sampler = nn.Identity() self.upsample = nn.Identity() self.norm = nn.Identity() def forward(self, x, H: int, W: int): B, N, C = x.shape if self.sr > 1.: x = x.transpose(1, 2).reshape(B, C, H, W) x = self.sampler(x) x = x.flatten(2).transpose(1, 2) qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, -1, C) if self.sr > 1: x = x.permute(0, 2, 1).reshape(B, C, int(H / self.sr), int(W / self.sr)) x = self.LocalProp(x) x = x.reshape(B, C, -1).permute(0, 2, 1) x = self.norm(x) x = self.proj(x) x = self.proj_drop(x) return x class LocalAgg(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = nn.BatchNorm2d(dim) self.conv1 = nn.Conv2d(dim, dim, 1) self.conv2 = nn.Conv2d(dim, dim, 1) self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.BatchNorm2d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = ConvMlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) x = x + self.drop_path( self.conv2(self.attn(self.conv1(self.norm1(x))))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class SelfAttn(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1.): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.attn = GlobalSparseAttn( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) # global layer_scale # self.ls = layer_scale def forward(self, x): x = x + self.pos_embed(x) B, N, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.transpose(1, 2).reshape(B, N, H, W) return x class LGLBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1.): super().__init__() if sr_ratio > 1: self.LocalAgg = LocalAgg(dim, num_heads, mlp_ratio, qkv_bias, qk_scale, drop, attn_drop, drop_path, act_layer, norm_layer) else: self.LocalAgg = nn.Identity() self.SelfAttn = SelfAttn(dim, num_heads, mlp_ratio, qkv_bias, qk_scale, drop, attn_drop, drop_path, act_layer, norm_layer, sr_ratio) def forward(self, x): x = self.LocalAgg(x) x = self.SelfAttn(x) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * ( img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.norm = nn.LayerNorm(embed_dim) self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({B}*{C}*{H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) B, C, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() return x @BACKBONES.register_module() class EdgeVit(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, depth=[1, 2, 3, 2], img_size=224, in_chans=3, num_classes=1000, embed_dim=[48, 96, 240, 384], head_dim=48, mlp_ratio=[4] * 4, qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-8), sr_ratios=[4, 2, 2, 1], pretrained=None): """ Args: depth (list): depth of each stage img_size (int, tuple): input image size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (list): embedding dimension of each stage head_dim (int): head dimension mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer (nn.Module): normalization layer """ super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed1 = PatchEmbed( img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) self.patch_embed2 = PatchEmbed( img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) self.patch_embed3 = PatchEmbed( img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) self.patch_embed4 = PatchEmbed( img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depth)) ] # stochastic depth decay rule num_heads = [dim // head_dim for dim in embed_dim] self.blocks1 = nn.ModuleList([ LGLBlock( dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, sr_ratio=sr_ratios[0]) for i in range(depth[0]) ]) self.blocks2 = nn.ModuleList([ LGLBlock( dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i + depth[0]], norm_layer=norm_layer, sr_ratio=sr_ratios[1]) for i in range(depth[1]) ]) self.blocks3 = nn.ModuleList([ LGLBlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i + depth[0] + depth[1]], norm_layer=norm_layer, sr_ratio=sr_ratios[2]) for i in range(depth[2]) ]) self.blocks4 = nn.ModuleList([ LGLBlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i + depth[0] + depth[1] + depth[2]], norm_layer=norm_layer, sr_ratio=sr_ratios[3]) for i in range(depth[3]) ]) self.norm = nn.BatchNorm2d(embed_dim[-1]) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential( OrderedDict([('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh())])) else: self.pre_logits = nn.Identity() self.pretrained = pretrained self.init_weights() def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ pretrained = pretrained or self.pretrained def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): x = self.patch_embed1(x) x = self.pos_drop(x) for blk in self.blocks1: x = blk(x) x = self.patch_embed2(x) for blk in self.blocks2: x = blk(x) x = self.patch_embed3(x) for blk in self.blocks3: x = blk(x) x = self.patch_embed4(x) for blk in self.blocks4: x = blk(x) x = self.norm(x) x = self.pre_logits(x) return x def forward(self, x): x = self.forward_features(x) return [x]