# YOLOX-PAI Turtorial ## Introduction Welcome to YOLOX-PAI! YOLOX-PAI is an incremental work of YOLOX based on PAI-EasyCV. We use various existing detection methods and PAI-Blade to boost the performance. We also provide an efficient way for end2end object detction. In breif, our main contributions are: - Investigate various detection methods upon YOLOX to achieve SOTA object detection results. - Provide an easy way to use PAI-Blade to accelerate the inference process. - Provide a convenient way to train/evaluate/export YOLOX-PAI model and conduct end2end object detection. To learn more details of YOLOX-PAI, you can refer to our [technical report](https://zhuanlan.zhihu.com/p/560597953 ) or [arxiv paper](https://arxiv.org/abs/2208.13040). ![image](../../../assets/result.jpg) ## Data preparation To download the dataset, please refer to [prepare_data.md](../prepare_data.md). Yolox support both coco format and [PAI-Itag detection format](https://help.aliyun.com/document_detail/311173.html#title-y6p-ger-5l7), ### COCO format To use coco data to train detection, you can refer to [configs/detection/yolox/yolox_s_8xb16_300e_coco.py](https://github.com/alibaba/EasyCV/tree/master/configs/detection/yolox/yolox_s_8xb16_300e_coco.py) for more configuration details. ### PAI-Itag detection format To use pai-itag detection format data to train detection, you can refer to [configs/detection/yolox/yolox_s_8xb16_300e_coco_pai.py](https://github.com/alibaba/EasyCV/tree/master/configs/detection/yolox/yolox_s_8xb16_300e_coco_pai.py) for more configuration details. ## Quick Start To use COCO format data, use config file `configs/detection/yolox/yolox_s_8xb16_300e_coco.py` To use PAI-Itag format data, use config file `configs/detection/yolox/yolox_s_8xb16_300e_coco_pai.py` You can use the [quick_start.md](../quick_start.md) for local installation or use our provided doker images (for both training and inference). ### Pull Docker ```shell sudo docker pull registry.cn-shanghai.aliyuncs.com/pai-ai-test/pai-easycv:yolox-pai ``` ### Start Container ```shell sudo nvidia-docker run -it -v path:path --name easycv_yolox_pai --shm-size=10g --network=host registry.cn-shanghai.aliyuncs.com/pai-ai-test/pai-easycv:yolox-pai ``` ### Train **Single gpu:** ```shell python tools/train.py \ ${CONFIG_PATH} \ --work_dir ${WORK_DIR} ``` **Multi gpus:** ```shell bash tools/dist_train.sh \ ${NUM_GPUS} \ ${CONFIG_PATH} \ --work_dir ${WORK_DIR} ```
Arguments - `NUM_GPUS`: number of gpus - `CONFIG_PATH`: the config file path of a detection method - `WORK_DIR`: your path to save models and logs
**Examples:** Edit `data_root`path in the `${CONFIG_PATH}` to your own data path. ```shell GPUS=8 bash tools/dist_train.sh configs/detection/yolox/yolox_s_8xb16_300e_coco.py $GPUS ``` ### Evaluation The pretrained model of YOLOX-PAI can be found [here](../model_zoo_det.md). **Single gpu:** ```shell python tools/eval.py \ ${CONFIG_PATH} \ ${CHECKPOINT} \ --eval ``` **Multi gpus:** ```shell bash tools/dist_test.sh \ ${CONFIG_PATH} \ ${NUM_GPUS} \ ${CHECKPOINT} \ --eval ```
Arguments - `CONFIG_PATH`: the config file path of a detection method - `NUM_GPUS`: number of gpus - `CHECKPOINT`: the checkpoint file named as epoch_*.pth.
**Examples:** ```shell GPUS=8 bash tools/dist_test.sh configs/detection/yolox/yolox_s_8xb16_300e_coco.py $GPUS work_dirs/detection/yolox/epoch_300.pth --eval ``` ### Export model ```shell python tools/export.py \ ${CONFIG_PATH} \ ${CHECKPOINT} \ ${EXPORT_PATH} ``` For more details of the export process, you can refer to [export.md](export.md).
Arguments - `CONFIG_PATH`: the config file path of a detection method - `CHECKPOINT`:your checkpoint file of a detection method named as epoch_*.pth. - `EXPORT_PATH`: your path to save export model
**Examples:** ```shell python tools/export.py configs/detection/yolox/yolox_s_8xb16_300e_coco.py \ work_dirs/detection/yolox/epoch_300.pth \ work_dirs/detection/yolox/epoch_300_export.pth ``` ### Inference Download exported models([preprocess](http://pai-vision-data-hz.oss-accelerate.aliyuncs.com/EasyCV/modelzoo/detection/yolox/yolox-pai/model/export/epoch_300_pre_notrt.pt.preprocess), [model](http://pai-vision-data-hz.oss-accelerate.aliyuncs.com/EasyCV/modelzoo/detection/yolox/yolox-pai/model/export/epoch_300_pre_notrt.pt.blade), [meta](http://pai-vision-data-hz.oss-accelerate.aliyuncs.com/EasyCV/modelzoo/detection/yolox/yolox-pai/model/export/epoch_300_pre_notrt.pt.blade.config.json)) or export your own model. Put them in the following format: ```shell export_blade/ epoch_300_pre_notrt.pt.blade epoch_300_pre_notrt.pt.blade.config.json epoch_300_pre_notrt.pt.preprocess ``` Download [test_image](http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/small_coco_demo/val2017/000000017627.jpg) ```python import cv2 from easycv.predictors import TorchYoloXPredictor output_ckpt = 'export_blade/epoch_300_pre_notrt.pt.blade' detector = TorchYoloXPredictor(output_ckpt,use_trt_efficientnms=False) img = cv2.imread('000000017627.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) output = detector.predict([img]) print(output) # visualize image image = img.copy() for box, cls_name in zip(output[0]['detection_boxes'], output[0]['detection_class_names']): # box is [x1,y1,x2,y2] box = [int(b) for b in box] image = cv2.rectangle(image, tuple(box[:2]), tuple(box[2:4]), (0,255,0), 2) cv2.putText(image, cls_name, (box[0], box[1]-5), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 2) cv2.imwrite('result.jpg',image) ```