# Modified from https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/ppocr/modeling/heads/det_db_head.py import torch import torch.nn as nn import torch.nn.functional as F from easycv.models.builder import HEADS class DBBaseHead(nn.Module): def __init__(self, in_channels, kernel_list=[3, 2, 2], **kwargs): super(DBBaseHead, self).__init__() self.conv1 = nn.Conv2d( in_channels=in_channels, out_channels=in_channels // 4, kernel_size=kernel_list[0], padding=int(kernel_list[0] // 2), bias=False) self.conv_bn1 = nn.BatchNorm2d(in_channels // 4) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.ConvTranspose2d( in_channels=in_channels // 4, out_channels=in_channels // 4, kernel_size=kernel_list[1], stride=2) self.conv_bn2 = nn.BatchNorm2d(in_channels // 4) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.ConvTranspose2d( in_channels=in_channels // 4, out_channels=1, kernel_size=kernel_list[2], stride=2) def forward(self, x): x = self.conv1(x) x = self.conv_bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.conv_bn2(x) x = self.relu2(x) x = self.conv3(x) x = torch.sigmoid(x) return x @HEADS.register_module() class DBHead(nn.Module): """ Differentiable Binarization (DB) for text detection: see https://arxiv.org/abs/1911.08947 args: params(dict): super parameters for build DB network """ def __init__(self, in_channels, k=50, **kwargs): super(DBHead, self).__init__() self.k = k binarize_name_list = [ 'conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48', 'conv2d_transpose_1', 'binarize' ] thresh_name_list = [ 'conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50', 'conv2d_transpose_3', 'thresh' ] self.binarize = DBBaseHead(in_channels, **kwargs) self.thresh = DBBaseHead(in_channels, **kwargs) def step_function(self, x, y): return torch.reciprocal(1 + torch.exp(-self.k * (x - y))) def forward(self, x): shrink_maps = self.binarize(x) if not self.training: return {'maps': shrink_maps} threshold_maps = self.thresh(x) binary_maps = self.step_function(shrink_maps, threshold_maps) y = torch.cat([shrink_maps, threshold_maps, binary_maps], dim=1) return {'maps': y}