# Modified from https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.6/ppocr/modeling/necks import torch import torch.nn as nn from easycv.models.registry import NECKS from ..backbones.rec_svtrnet import Block, ConvBNLayer class Im2Seq(nn.Module): def __init__(self, in_channels, **kwargs): super().__init__() self.out_channels = in_channels def forward(self, x): B, C, H, W = x.shape # assert H == 1 x = x.squeeze(dim=2) # x = x.transpose([0, 2, 1]) # paddle (NTC)(batch, width, channels) x = x.permute(0, 2, 1) return x class EncoderWithRNN_(nn.Module): def __init__(self, in_channels, hidden_size): super(EncoderWithRNN_, self).__init__() self.out_channels = hidden_size * 2 self.rnn1 = nn.LSTM( in_channels, hidden_size, bidirectional=False, batch_first=True, num_layers=2) self.rnn2 = nn.LSTM( in_channels, hidden_size, bidirectional=False, batch_first=True, num_layers=2) def forward(self, x): self.rnn1.flatten_parameters() self.rnn2.flatten_parameters() out1, h1 = self.rnn1(x) out2, h2 = self.rnn2(torch.flip(x, [1])) return torch.cat([out1, torch.flip(out2, [1])], 2) class EncoderWithRNN(nn.Module): def __init__(self, in_channels, hidden_size): super(EncoderWithRNN, self).__init__() self.out_channels = hidden_size * 2 self.lstm = nn.LSTM( in_channels, hidden_size, num_layers=2, batch_first=True, bidirectional=True) # batch_first:=True def forward(self, x): x, _ = self.lstm(x) return x class EncoderWithFC(nn.Module): def __init__(self, in_channels, hidden_size): super(EncoderWithFC, self).__init__() self.out_channels = hidden_size self.fc = nn.Linear( in_channels, hidden_size, bias=True, ) def forward(self, x): x = self.fc(x) return x class EncoderWithSVTR(nn.Module): def __init__( self, in_channels, dims=64, # XS depth=2, hidden_dims=120, use_guide=False, num_heads=8, qkv_bias=True, mlp_ratio=2.0, drop_rate=0.1, attn_drop_rate=0.1, drop_path=0., qk_scale=None, **kwargs): super(EncoderWithSVTR, self).__init__() self.depth = depth self.use_guide = use_guide self.conv1 = ConvBNLayer( in_channels, in_channels // 8, padding=1, act='swish') self.conv2 = ConvBNLayer( in_channels // 8, hidden_dims, kernel_size=1, act='swish') self.svtr_block = nn.ModuleList([ Block( dim=hidden_dims, num_heads=num_heads, mixer='Global', HW=None, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, act_layer='swish', attn_drop=attn_drop_rate, drop_path=drop_path, norm_layer='nn.LayerNorm', epsilon=1e-05, prenorm=False) for i in range(depth) ]) self.norm = nn.LayerNorm(hidden_dims, eps=1e-6) self.conv3 = ConvBNLayer( hidden_dims, in_channels, kernel_size=1, act='swish') # last conv-nxn, the input is concat of input tensor and conv3 output tensor self.conv4 = ConvBNLayer( 2 * in_channels, in_channels // 8, padding=1, act='swish') self.conv1x1 = ConvBNLayer( in_channels // 8, dims, kernel_size=1, act='swish') self.out_channels = dims self.apply(self._init_weights) def _init_weights(self, m): # weight initialization if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.LayerNorm): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) def forward(self, x): # for use guide if self.use_guide: z = x.clone() z.stop_gradient = True else: z = x # for short cut h = z # reduce dim z = self.conv1(z) z = self.conv2(z) # SVTR global block B, C, H, W = z.shape z = z.flatten(2).permute(0, 2, 1) for blk in self.svtr_block: z = blk(z) z = self.norm(z) # last stage z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2) z = self.conv3(z) z = torch.cat((h, z), dim=1) z = self.conv1x1(self.conv4(z)) return z @NECKS.register_module() class SequenceEncoder(nn.Module): def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs): super(SequenceEncoder, self).__init__() self.encoder_reshape = Im2Seq(in_channels) self.out_channels = self.encoder_reshape.out_channels self.encoder_type = encoder_type if encoder_type == 'reshape': self.only_reshape = True else: support_encoder_dict = { 'reshape': Im2Seq, 'fc': EncoderWithFC, 'rnn': EncoderWithRNN, 'svtr': EncoderWithSVTR, } assert encoder_type in support_encoder_dict, '{} must in {}'.format( encoder_type, support_encoder_dict.keys()) if encoder_type == 'svtr': self.encoder = support_encoder_dict[encoder_type]( self.encoder_reshape.out_channels, **kwargs) else: self.encoder = support_encoder_dict[encoder_type]( self.encoder_reshape.out_channels, hidden_size) self.out_channels = self.encoder.out_channels self.only_reshape = False def forward(self, x): if self.encoder_type != 'svtr': x = self.encoder_reshape(x) if not self.only_reshape: x = self.encoder(x) return x else: x = self.encoder(x) x = self.encoder_reshape(x) return x