# Copyright (c) Alibaba, Inc. and its affiliates. import os import jsonplus from easycv.file import io from easycv.utils.config_tools import Config MODELSCOPE_PREFIX = 'modelscope' EASYCV_ARCH = '__easycv_arch__' def to_ms_config(cfg, task, ms_model_name, save_path=None, dump=True): """Convert EasyCV config to ModelScope style. Args: cfg (str | Config): Easycv config file or Config object. task (str): Task name in modelscope, refer to: modelscope.utils.constant.Tasks. ms_model_name (str): Model name registered in modelscope, model type will be replaced with `ms_model_name`, used in modelscope. save_path (str): Save path for saving the generated modelscope configuration file. Only valid when dump is True. dump (bool): Whether dump the converted config to `save_path`. """ # TODO: support multi eval_pipelines # TODO: support for adding customized required keys to the configuration file if isinstance(cfg, str): easycv_cfg = Config.fromfile(cfg) if dump and save_path is None: save_dir = os.path.dirname(cfg) save_name = MODELSCOPE_PREFIX + '_' + os.path.splitext( os.path.basename(cfg))[0] + '.json' save_path = os.path.join(save_dir, save_name) else: easycv_cfg = cfg if dump and save_path is None: raise ValueError('Please provide `save_path`!') assert save_path.endswith('json'), 'Only support json file!' optimizer_options = easycv_cfg.optimizer_config optimizer_options.update({'loss_keys': 'total_loss'}) val_dataset_cfg = easycv_cfg.data.val val_imgs_per_gpu = val_dataset_cfg.pop('imgs_per_gpu', easycv_cfg.data.imgs_per_gpu) val_workers_per_gpu = val_dataset_cfg.pop('workers_per_gpu', easycv_cfg.data.workers_per_gpu) log_config = easycv_cfg.log_config predict_config = easycv_cfg.get('predict', None) hooks = [{ 'type': 'CheckpointHook', 'interval': easycv_cfg.checkpoint_config.interval }, { 'type': 'EvaluationHook', 'interval': easycv_cfg.eval_config.interval }, { 'type': 'AddLrLogHook' }, { 'type': 'IterTimerHook' }] custom_hooks = easycv_cfg.get('custom_hooks', []) hooks.extend(custom_hooks) for log_hook_i in log_config.hooks: if log_hook_i['type'] == 'TensorboardLoggerHook': # replace with modelscope api hooks.append({ 'type': 'TensorboardHook', 'interval': log_config.interval }) elif log_hook_i['type'] == 'TextLoggerHook': # use modelscope api hooks.append({ 'type': 'TextLoggerHook', 'interval': log_config.interval }) else: log_hook_i.update({'interval': log_config.interval}) hooks.append(log_hook_i) ori_model_type = easycv_cfg.model.pop('type') ms_cfg = Config( dict( task=task, framework='pytorch', model={ 'type': ms_model_name, **easycv_cfg.model, EASYCV_ARCH: { 'type': ori_model_type } }, dataset=dict(train=easycv_cfg.data.train, val=val_dataset_cfg), train=dict( work_dir=easycv_cfg.get('work_dir', None), max_epochs=easycv_cfg.total_epochs, dataloader=dict( batch_size_per_gpu=easycv_cfg.data.imgs_per_gpu, workers_per_gpu=easycv_cfg.data.workers_per_gpu, ), optimizer=dict( **easycv_cfg.optimizer, options=optimizer_options), lr_scheduler=easycv_cfg.lr_config, hooks=hooks), evaluation=dict( dataloader=dict( batch_size_per_gpu=val_imgs_per_gpu, workers_per_gpu=val_workers_per_gpu, ), metrics={ 'type': 'EasyCVMetric', 'evaluators': easycv_cfg.eval_pipelines[0].evaluators }), pipeline=dict(predictor_config=predict_config), )) if dump: with io.open(save_path, 'w') as f: res = jsonplus.dumps( ms_cfg._cfg_dict.to_dict(), indent=4, sort_keys=False) f.write(res) return ms_cfg