# Copyright (c) Alibaba, Inc. and its affiliates. r""" This model is taken from the official PyTorch model zoo. - torchvision.models.mobilenet.py on 31th Aug, 2019 """ from torch import nn from ..modelzoo import mobilenetv2 as model_urls from ..registry import BACKBONES __all__ = ['MobileNetV2'] def _make_divisible(v, divisor, min_value=None): """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py :param v: :param divisor: :param min_value: :return: """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v class ConvBNReLU(nn.Sequential): def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): padding = (kernel_size - 1) // 2 super(ConvBNReLU, self).__init__( nn.Conv2d( in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False), nn.BatchNorm2d(out_planes), nn.ReLU6(inplace=True)) class InvertedResidual(nn.Module): def __init__(self, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() self.stride = stride assert stride in [1, 2] hidden_dim = int(round(inp * expand_ratio)) self.use_res_connect = self.stride == 1 and inp == oup layers = [] if expand_ratio != 1: # pw layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) layers.extend([ # dw ConvBNReLU( hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), # pw-linear nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.Sequential(*layers) def forward(self, x): if self.use_res_connect: return x + self.conv(x) else: return self.conv(x) @BACKBONES.register_module class MobileNetV2(nn.Module): def __init__(self, num_classes=0, width_multi=1.0, inverted_residual_setting=None, round_nearest=8): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_multi (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding """ super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len( inverted_residual_setting[0]) != 4: raise ValueError('inverted_residual_setting should be non-empty ' 'or a 4-element list, got {}'.format( inverted_residual_setting)) # building first layer input_channel = _make_divisible(input_channel * width_multi, round_nearest) self.last_channel = _make_divisible( last_channel * max(1.0, width_multi), round_nearest) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_multi, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append( block( input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append( ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) # make it nn.Sequential self.features = nn.Sequential(*features) # building classifier if num_classes > 0: self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes), ) self.default_pretrained_model_path = model_urls[self.__class__.__name__ + '_' + str(width_multi)] def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def forward(self, x): x = self.features(x) if hasattr(self, 'classifier'): x = x.mean([2, 3]) x = self.classifier(x) return [x]