# Copyright (c) Alibaba, Inc. and its affiliates. import json import os from glob import glob import numpy as np import torch from mmcv.ops import RoIPool from mmcv.parallel import collate, scatter from torch.hub import load_state_dict_from_url from torchvision.transforms import Compose from easycv.apis.export import reparameterize_models from easycv.core.visualization import imshow_bboxes from easycv.datasets.registry import PIPELINES from easycv.datasets.utils import replace_ImageToTensor from easycv.file import io from easycv.file.utils import is_url_path, url_path_exists from easycv.models import build_model from easycv.models.detection.utils import postprocess from easycv.utils.checkpoint import load_checkpoint from easycv.utils.config_tools import mmcv_config_fromfile from easycv.utils.constant import CACHE_DIR from easycv.utils.logger import get_root_logger from easycv.utils.mmlab_utils import (dynamic_adapt_for_mmlab, remove_adapt_for_mmlab) from easycv.utils.registry import build_from_cfg from .base import PredictorV2 from .builder import PREDICTORS from .classifier import TorchClassifier try: from easy_vision.python.inference.predictor import PredictorInterface except Exception: from .interface import PredictorInterface try: from thirdparty.mtcnn import FaceDetector except Exception: from easycv.thirdparty.mtcnn import FaceDetector @PREDICTORS.register_module() class DetectionPredictor(PredictorV2): """Generic Detection Predictor, it will filter bbox results by ``score_threshold`` . """ def __init__(self, model_path=None, config_file=None, batch_size=1, device=None, save_results=False, save_path=None, mode='rgb', score_threshold=0.5): super(DetectionPredictor, self).__init__( model_path, config_file=config_file, batch_size=batch_size, device=device, save_results=save_results, save_path=save_path, mode=mode, ) self.score_thresh = score_threshold def postprocess(self, inputs, *args, **kwargs): for batch_index in range(self.batch_size): this_detection_scores = inputs['detection_scores'][batch_index] sel_ids = this_detection_scores > self.score_thresh inputs['detection_scores'][batch_index] = inputs[ 'detection_scores'][batch_index][sel_ids] inputs['detection_boxes'][batch_index] = inputs['detection_boxes'][ batch_index][sel_ids] inputs['detection_classes'][batch_index] = inputs[ 'detection_classes'][batch_index][sel_ids] # TODO class label remapping return inputs class DetrPredictor(PredictorInterface): """Inference image(s) with the detector. Args: model_path (str): checkpoint model and export model are shared. config_path (str): If config_path is specified, both checkpoint model and export model can be used; if config_path=None, the export model is used by default. """ def __init__(self, model_path, config_path=None): self.model_path = model_path if config_path is not None: self.cfg = mmcv_config_fromfile(config_path) else: logger = get_root_logger() logger.warning('please use export model!') if is_url_path(self.model_path) and url_path_exists( self.model_path): checkpoint = load_state_dict_from_url(model_path) else: assert io.exists( self.model_path), f'{self.model_path} does not exists' with io.open(self.model_path, 'rb') as infile: checkpoint = torch.load(infile, map_location='cpu') assert 'meta' in checkpoint and 'config' in checkpoint[ 'meta'], 'meta.config is missing from checkpoint' config_str = checkpoint['meta']['config'] if isinstance(config_str, dict): config_str = json.dumps(config_str) # get config basename = os.path.basename(self.model_path) fname, _ = os.path.splitext(basename) self.local_config_file = os.path.join(CACHE_DIR, f'{fname}_config.json') if not os.path.exists(CACHE_DIR): os.makedirs(CACHE_DIR) with open(self.local_config_file, 'w') as ofile: ofile.write(config_str) self.cfg = mmcv_config_fromfile(self.local_config_file) # dynamic adapt mmdet models dynamic_adapt_for_mmlab(self.cfg) # build model self.model = build_model(self.cfg.model) self.device = 'cuda' if torch.cuda.is_available() else 'cpu' map_location = 'cpu' if self.device == 'cpu' else 'cuda' self.ckpt = load_checkpoint( self.model, self.model_path, map_location=map_location) self.model.to(self.device) self.model.eval() self.CLASSES = self.cfg.CLASSES def predict(self, imgs): """ Args: imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): Either image files or loaded images. Returns: If imgs is a list or tuple, the same length list type results will be returned, otherwise return the detection results directly. """ if isinstance(imgs, (list, tuple)): is_batch = True else: imgs = [imgs] is_batch = False cfg = self.cfg device = next(self.model.parameters()).device # model device if isinstance(imgs[0], np.ndarray): cfg = cfg.copy() # set loading pipeline type cfg.data.val.pipeline.insert(0, dict(type='LoadImageFromWebcam')) else: cfg = cfg.copy() # set loading pipeline type cfg.data.val.pipeline.insert( 0, dict( type='LoadImageFromFile', file_client_args=dict( backend=('http' if imgs[0].startswith('http' ) else 'disk')))) cfg.data.val.pipeline = replace_ImageToTensor(cfg.data.val.pipeline) transforms = [] for transform in cfg.data.val.pipeline: if 'img_scale' in transform: transform['img_scale'] = tuple(transform['img_scale']) if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) transforms.append(transform) elif callable(transform): transforms.append(transform) else: raise TypeError('transform must be callable or a dict') test_pipeline = Compose(transforms) datas = [] for img in imgs: # prepare data if isinstance(img, np.ndarray): # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) datas.append(data) data = collate(datas, samples_per_gpu=len(imgs)) # just get the actual data from DataContainer data['img_metas'] = [ img_metas.data[0] for img_metas in data['img_metas'] ] data['img'] = [img.data[0] for img in data['img']] if next(self.model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] else: for m in self.model.modules(): assert not isinstance( m, RoIPool ), 'CPU inference with RoIPool is not supported currently.' # forward the model with torch.no_grad(): results = self.model(mode='test', **data) return results def visualize(self, img, results, score_thr=0.3, show=False, out_file=None): bboxes = results['detection_boxes'][0] scores = results['detection_scores'][0] labels = results['detection_classes'][0].tolist() # If self.CLASSES is not None, class_id will be converted to self.CLASSES for visualization, # otherwise the class_id will be displayed. # And don't try to modify the value in results, it may cause some bugs or even precision problems, # because `self.evaluate` will also use the results, refer to: https://github.com/alibaba/EasyCV/pull/67 if self.CLASSES is not None and len(self.CLASSES) > 0: for i, classes_id in enumerate(labels): if classes_id is None: labels[i] = None else: labels[i] = self.CLASSES[int(classes_id)] if scores is not None and score_thr > 0: inds = scores > score_thr bboxes = bboxes[inds] labels = np.array(labels)[inds] imshow_bboxes( img, bboxes, labels=labels, colors='green', text_color='white', font_size=20, thickness=1, font_scale=0.5, show=show, out_file=out_file) @PREDICTORS.register_module() class TorchYoloXPredictor(PredictorInterface): def __init__(self, model_path, max_det=100, score_thresh=0.5, use_trt_efficientnms=False, model_config=None): """ init model Args: model_path: model file path max_det: maximum number of detection score_thresh: score_thresh to filter box model_config: config string for model to init, in json format """ self.model_path = model_path self.max_det = max_det self.device = 'cuda' if torch.cuda.is_available() else 'cpu' # set type self.model_type = 'raw' if model_path.endswith('jit'): self.model_type = 'jit' if model_path.endswith('blade'): self.model_type = 'blade' self.use_trt_efficientnms = use_trt_efficientnms if self.model_type == 'blade' or self.use_trt_efficientnms: import torch_blade if model_config: model_config = json.loads(model_config) else: model_config = {} self.score_thresh = model_config[ 'score_thresh'] if 'score_thresh' in model_config else score_thresh if self.model_type != 'raw': # jit or blade model preprocess_path = '.'.join( model_path.split('.')[:-1] + ['preprocess']) if os.path.exists(preprocess_path): # use a preprocess jit model to speed up with io.open(preprocess_path, 'rb') as infile: map_location = 'cpu' if self.device == 'cpu' else 'cuda' self.preprocess = torch.jit.load(infile, map_location) with io.open(model_path, 'rb') as infile: map_location = 'cpu' if self.device == 'cpu' else 'cuda' self.model = torch.jit.load(infile, map_location) with io.open(model_path + '.config.json', 'r') as infile: self.cfg = json.load(infile) test_pipeline = self.cfg['test_pipeline'] self.CLASSES = self.cfg['classes'] self.preprocess_jit = self.cfg['export']['preprocess_jit'] self.traceable = True else: self.preprocess_jit = False with io.open(self.model_path, 'rb') as infile: checkpoint = torch.load(infile, map_location='cpu') assert 'meta' in checkpoint and 'config' in checkpoint[ 'meta'], 'meta.config is missing from checkpoint' config_str = checkpoint['meta']['config'] # get config basename = os.path.basename(self.model_path) fname, _ = os.path.splitext(basename) self.local_config_file = os.path.join(CACHE_DIR, f'{fname}_config.json') if not os.path.exists(CACHE_DIR): os.makedirs(CACHE_DIR) with open(self.local_config_file, 'w') as ofile: ofile.write(config_str) self.cfg = mmcv_config_fromfile(self.local_config_file) # build model self.model = build_model(self.cfg.model) self.traceable = getattr(self.model, 'trace_able', False) self.device = 'cuda' if torch.cuda.is_available() else 'cpu' map_location = 'cpu' if self.device == 'cpu' else 'cuda' self.ckpt = load_checkpoint( self.model, self.model_path, map_location=map_location) self.model = reparameterize_models(self.model) self.model.to(self.device) self.model.eval() test_pipeline = self.cfg.test_pipeline self.CLASSES = self.cfg.CLASSES # build pipeline pipeline = [build_from_cfg(p, PIPELINES) for p in test_pipeline] self.pipeline = Compose(pipeline) self.test_conf = self.cfg['model'].get('test_conf', 0.01) self.nms_thre = self.cfg['model'].get('nms_thre', 0.65) self.num_classes = len(self.CLASSES) def post_assign(self, outputs, img_metas): detection_boxes = [] detection_scores = [] detection_classes = [] img_metas_list = [] for i in range(len(outputs)): if img_metas: img_metas_list.append(img_metas[i]) if outputs[i].requires_grad == True: outputs[i] = outputs[i].detach() if outputs[i] is not None: bboxes = outputs[i][:, 0:4] if outputs[i] is not None else None if img_metas: bboxes /= img_metas[i]['scale_factor'][0] detection_boxes.append(bboxes.cpu().numpy()) detection_scores.append( (outputs[i][:, 4] * outputs[i][:, 5]).cpu().numpy()) detection_classes.append(outputs[i][:, 6].cpu().numpy().astype( np.int32)) else: detection_boxes.append(None) detection_scores.append(None) detection_classes.append(None) test_outputs = { 'detection_boxes': detection_boxes, 'detection_scores': detection_scores, 'detection_classes': detection_classes, 'img_metas': img_metas_list } return test_outputs def predict(self, input_data_list, batch_size=-1, to_numpy=True): """ using session run predict a number of samples using batch_size Args: input_data_list: a list of numpy array(in rgb order), each array is a sample to be predicted batch_size: batch_size passed by the caller, you can also ignore this param and use a fixed number if you do not want to adjust batch_size in runtime Return: result: a list of dict, each dict is the prediction result of one sample eg, {"output1": value1, "output2": value2}, the value type can be python int str float, and numpy array """ output_list = [] for idx, img in enumerate(input_data_list): if type(img) is not np.ndarray: img = np.asarray(img) ori_img_shape = img.shape[:2] if self.preprocess_jit: # the input should also be as the type of uint8 as mmcv img = torch.from_numpy(img).to(self.device) img = img.unsqueeze(0) if hasattr(self, 'preprocess'): img, img_info = self.preprocess(img) else: data_dict = {'img': img} data_dict = self.pipeline(data_dict) img = data_dict['img'] img = torch.unsqueeze(img._data, 0).to(self.device) data_dict.pop('img') img_info = data_dict['img_metas']._data if self.traceable: if self.use_trt_efficientnms: with torch.no_grad(): tmp_out = self.model(img) det_out = {} det_out['detection_boxes'] = tmp_out[1] / img_info[ 'scale_factor'][0] det_out['detection_scores'] = tmp_out[2] det_out['detection_classes'] = tmp_out[3] else: with torch.no_grad(): det_out = self.post_assign( postprocess( self.model(img), self.num_classes, self.test_conf, self.nms_thre), img_metas=[img_info]) else: with torch.no_grad(): det_out = self.model( img, mode='test', img_metas=[img_info]) # print(det_out) # det_out = det_out[:self.max_det] # scale box to original image scale, this logic has some operation # that can not be traced, see # https://discuss.pytorch.org/t/windows-libtorch-c-load-cuda-module-with-std-runtime-error-message-shape-4-is-invalid-for-input-if-size-40/63073/4 # det_out = scale_coords(img.shape[2:], det_out, ori_img_shape, (scale_factor, pad)) detection_scores = det_out['detection_scores'][0] if detection_scores is not None: sel_ids = detection_scores > self.score_thresh detection_scores = detection_scores[sel_ids] detection_boxes = det_out['detection_boxes'][0][sel_ids] detection_classes = det_out['detection_classes'][0][sel_ids] else: detection_boxes = None detection_classes = None num_boxes = detection_classes.shape[ 0] if detection_classes is not None else 0 detection_classes_names = [ self.CLASSES[detection_classes[idx]] for idx in range(num_boxes) ] out = { 'ori_img_shape': list(ori_img_shape), 'detection_boxes': detection_boxes, 'detection_scores': detection_scores, 'detection_classes': detection_classes, 'detection_class_names': detection_classes_names, } output_list.append(out) return output_list @PREDICTORS.register_module() class TorchFaceDetector(PredictorInterface): def __init__(self, model_path=None, model_config=None): """ init model, add a facedetect and align for img input. Args: model_path: model file path model_config: config string for model to init, in json format """ self.detector = FaceDetector() def get_output_type(self): """ in this function user should return a type dict, which indicates which type of data should the output of predictor be converted to * type json, data will be serialized to json str * type image, data will be converted to encode image binary and write to oss file, whose name is output_dir/${key}/${input_filename}_${idx}.jpg, where input_filename is the base filename extracted from url, key corresponds to the key in the dict of output_type, if the type of data indexed by key is a list, idx is the index of element in list, otherwhile ${idx} will be empty * type video, data will be converted to encode video binary and write to oss file, :: return { 'image': 'image', 'feature': 'json' } indicating that the image data in the output dict will be save to image file and feature in output dict will be converted to json """ return {} def batch(self, image_tensor_list): return torch.stack(image_tensor_list) def predict(self, input_data_list, batch_size=-1, threshold=0.95): """ using session run predict a number of samples using batch_size Args: input_data_list: a list of numpy array, each array is a sample to be predicted batch_size: batch_size passed by the caller, you can also ignore this param and use a fixed number if you do not want to adjust batch_size in runtime Return: result: a list of dict, each dict is the prediction result of one sample eg, {"output1": value1, "output2": value2}, the value type can be python int str float, and numpy array Raise: if detect !=1 face in a img, then do nothing for this image """ num_image = len(input_data_list) assert len( input_data_list) > 0, 'input images should not be an empty list' image_list = input_data_list outputs_list = [] for idx, img in enumerate(image_list): if type(img) is not np.ndarray: img = np.asarray(img) ori_img_shape = img.shape[:2] bbox, ld = self.detector.safe_detect(img) _scores = np.array([i[-1] for i in bbox]) boxes = [] scores = [] for idx, s in enumerate(_scores): if s > threshold: boxes.append(bbox[idx][:-1]) scores.append(bbox[idx][-1]) boxes = np.array(boxes) scores = np.array(scores) out = { 'ori_img_shape': list(ori_img_shape), 'detection_boxes': boxes, 'detection_scores': scores, 'detection_classes': [0] * boxes.shape[0], 'detection_class_names': ['face'] * boxes.shape[0], } outputs_list.append(out) return outputs_list @PREDICTORS.register_module() class TorchYoloXClassifierPredictor(PredictorInterface): def __init__(self, models_root_dir, max_det=100, cls_score_thresh=0.01, det_model_config=None, cls_model_config=None): """ init model, add a yolox and classification predictor for img input. Args: models_root_dir: models_root_dir/detection/*.pth and models_root_dir/classification/*.pth det_model_config: config string for detection model to init, in json format cls_model_config: config string for classification model to init, in json format """ det_model_path = glob( '%s/detection/*.pt*' % models_root_dir, recursive=True) assert (len(det_model_path) == 1) cls_model_path = glob( '%s/classification/*.pt*' % models_root_dir, recursive=True) assert (len(cls_model_path) == 1) self.det_predictor = TorchYoloXPredictor( det_model_path[0], max_det=max_det, model_config=det_model_config) self.cls_predictor = TorchClassifier( cls_model_path[0], model_config=cls_model_config) self.cls_score_thresh = cls_score_thresh def predict(self, input_data_list, batch_size=-1): """ using session run predict a number of samples using batch_size Args: input_data_list: a list of numpy array(in rgb order), each array is a sample to be predicted batch_size: batch_size passed by the caller, you can also ignore this param and use a fixed number if you do not want to adjust batch_size in runtime Return: result: a list of dict, each dict is the prediction result of one sample eg, {"output1": value1, "output2": value2}, the value type can be python int str float, and numpy array """ results = self.det_predictor.predict( input_data_list, batch_size=batch_size) for img_idx, img in enumerate(input_data_list): detection_boxes = results[img_idx]['detection_boxes'] detection_classes = results[img_idx]['detection_classes'] detection_scores = results[img_idx]['detection_scores'] crop_img_batch = [] for idx in range(detection_boxes.shape[0]): xyxy = [int(a) for a in detection_boxes[idx]] cropImg = img[xyxy[1]:xyxy[3], xyxy[0]:xyxy[2]] crop_img_batch.append(cropImg) if len(crop_img_batch) > 0: cls_output = self.cls_predictor.predict( crop_img_batch, batch_size=32) else: cls_output = [] class_name_list = [] class_id_list = [] class_score_list = [] det_bboxes = [] product_count_dict = {} for idx in range(len(cls_output)): class_name = cls_output[idx]['class_name'][0] class_score = cls_output[idx]['class_probs'][class_name] if class_score < self.cls_score_thresh: continue if class_name not in product_count_dict: product_count_dict[class_name] = 1 else: product_count_dict[class_name] += 1 class_name_list.append(class_name) class_id_list.append(int(cls_output[idx]['class'][0])) class_score_list.append(class_score) det_bboxes.append([float(a) for a in detection_boxes[idx]]) results[img_idx].update({ 'detection_boxes': np.array(det_bboxes), 'detection_scores': class_score_list, 'detection_classes': class_id_list, 'detection_class_names': class_name_list, 'product_count': product_count_dict }) return results