_base_ = ['configs/ocr/recognition/rec_model_ch.py'] character_dict_path = 'http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/ocr/dict/ta_dict.txt' label_length = 128 model = dict( type='OCRRecNet', backbone=dict( type='OCRRecMobileNetV1Enhance', scale=0.5, last_conv_stride=[1, 2], last_pool_type='avg'), # inference # neck=dict( # type='SequenceEncoder', # in_channels=512, # encoder_type='svtr', # dims=64, # depth=2, # hidden_dims=120, # use_guide=True), # head=dict( # type='CTCHead', # in_channels=64, # fc_decay=0.00001), head=dict( type='MultiHead', in_channels=512, out_channels_list=dict( CTCLabelDecode=label_length + 2, SARLabelDecode=label_length + 4, ), head_list=[ dict( type='CTCHead', Neck=dict( type='svtr', dims=64, depth=2, hidden_dims=120, use_guide=True), Head=dict(fc_decay=0.00001, )), dict(type='SARHead', enc_dim=512, max_text_length=25) ]), postprocess=dict( type='CTCLabelDecode', character_dict_path=character_dict_path, use_space_char=True), loss=dict( type='MultiLoss', ignore_index=label_length + 3, loss_config_list=[ dict(CTCLoss=None), dict(SARLoss=None), ]), pretrained=None)