# Copyright (c) Alibaba, Inc. and its affiliates. from collections import OrderedDict from mmcv.runner import get_dist_info from mmcv.runner.hooks import Hook from torch import nn from ..utils.dist_utils import all_reduce_dict from .registry import HOOKS def get_norm_states(module): async_norm_states = OrderedDict() for name, child in module.named_modules(): if isinstance(child, nn.modules.batchnorm._NormBase): for k, v in child.state_dict().items(): async_norm_states['.'.join([name, k])] = v return async_norm_states @HOOKS.register_module() class SyncNormHook(Hook): """Synchronize Norm states after training epoch, currently used in YOLOX. Args: no_aug_epochs (int): The number of latter epochs in the end of the training to switch to synchronizing norm interval. Default: 15. interval (int): Synchronizing norm interval. Default: 1. """ def __init__(self, no_aug_epochs=15, interval=1, **kwargs): super(SyncNormHook, self).__init__() self.interval = interval self.no_aug_epochs = no_aug_epochs def before_train_epoch(self, runner): epoch = runner.epoch if (epoch + 1) == runner.max_epochs - self.no_aug_epochs: # Synchronize norm every epoch. self.interval = 1 def after_train_epoch(self, runner): """Synchronizing norm.""" epoch = runner.epoch module = runner.model if (epoch + 1) % self.interval == 0: _, world_size = get_dist_info() if world_size == 1: return norm_states = get_norm_states(module) norm_states = all_reduce_dict(norm_states, op='mean') module.load_state_dict(norm_states, strict=False)