_base_ = 'configs/base.py' # oss config only works when using oss # sync local models and logs to oss oss_sync_config = dict(other_file_list=['**/events.out.tfevents*', '**/*log*']) oss_io_config = dict( ak_id='your oss ak id', ak_secret='your oss ak secret', hosts='your oss hosts', buckets=['your oss buckets']) # model settings model = dict( type='Classification', pretrained=None, with_sobel=False, backbone=dict( type='ResNet', depth=50, in_channels=3, out_indices=[4], # 0: conv-1, x: stage-x norm_cfg=dict(type='BN'), frozen_stages=4), head=dict( type='ClsHead', with_avg_pool=True, in_channels=2048, num_classes=1000)) base_root = 'data/imagenet_raw/' data_train_list = base_root + 'meta/train_labeled.txt' data_train_root = base_root + 'train' data_test_list = base_root + 'meta/val_labeled.txt' data_test_root = base_root + 'val' dataset_type = 'ClsDataset' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_pipeline = [ dict(type='RandomResizedCrop', size=224), dict(type='RandomHorizontalFlip'), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), ] test_pipeline = [ dict(type='Resize', size=256), dict(type='CenterCrop', size=224), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), ] data = dict( imgs_per_gpu=32, # total 32*8=256, 8GPU linear cls workers_per_gpu=5, train=dict( type=dataset_type, data_source=dict( type='ClsSourceImageList', list_file=data_train_list, root=data_train_root), pipeline=train_pipeline), val=dict( type=dataset_type, data_source=dict( type='ClsSourceImageList', list_file=data_test_list, root=data_test_root), pipeline=test_pipeline)) eval_config = dict(interval=1, gpu_collect=True) eval_pipelines = [ dict( mode='test', data=data['val'], evaluators=[dict(type='ClsEvaluator', topk=(1, 5))]) ] # optimizer # optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=1e-4) optimizer = dict(type='SGD', lr=30., momentum=0.9, weight_decay=0.) # learning policy lr_config = dict(policy='step', step=[60, 80]) checkpoint_config = dict(interval=10) # runtime settings total_epochs = 100 load_from = None