_base_ = 'configs/base.py' checkpoint_config = dict(interval=10) # optimizer paramwise_options = { 'backbone': dict(lr_mult=0.1), } optimizer = dict( type='AdamW', lr=1e-4, weight_decay=1e-4, paramwise_options=paramwise_options) optimizer_config = dict(grad_clip=dict(max_norm=0.1, norm_type=2)) # learning policy lr_config = dict(policy='step', step=[11]) total_epochs = 12 find_unused_parameters = False