# model settings model = dict( type='Detection', pretrained=True, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(1, 2, 3, 4), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch'), neck=dict( type='FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, start_level=1, add_extra_convs='on_output', # use P5 num_outs=5, relu_before_extra_convs=True), head=dict( type='FCOSHead', num_classes=80, in_channels=256, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], center_sampling=True, center_sample_radius=1.5, norm_on_bbox=True, centerness_on_reg=True, conv_cfg=None, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_bias=True, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.6), max_per_img=100)))