# Modified from https://github.com/PaddlePaddle/PaddleOCR/tree/release/2.6/ppocr/data/imaug import math import random import sys import cv2 import imgaug import imgaug.augmenters as iaa import numpy as np import pyclipper from shapely.geometry import Polygon from easycv.datasets.registry import PIPELINES @PIPELINES.register_module() class RecConAug(object): """concat multiple texts together for text recognition training """ def __init__(self, prob=0.5, image_shape=(32, 320, 3), max_text_length=25, **kwargs): """ Args: prob (float, optional): the probability whether do data augmentation. Defaults to 0.5. image_shape (tuple, optional): the output image shape. Defaults to (32, 320, 3). max_text_length (int, optional): the max length of text label. Defaults to 25. """ self.prob = prob self.max_text_length = max_text_length self.image_shape = image_shape self.max_wh_ratio = self.image_shape[1] / self.image_shape[0] def merge_ext_data(self, data, ext_data): ori_w = round(data['img'].shape[1] / data['img'].shape[0] * self.image_shape[0]) ext_w = round(ext_data['img'].shape[1] / ext_data['img'].shape[0] * self.image_shape[0]) data['img'] = cv2.resize(data['img'], (ori_w, self.image_shape[0])) ext_data['img'] = cv2.resize(ext_data['img'], (ext_w, self.image_shape[0])) data['img'] = np.concatenate([data['img'], ext_data['img']], axis=1) data['label'] += ext_data['label'] return data def __call__(self, data): rnd_num = random.random() if rnd_num > self.prob: return data for idx, ext_data in enumerate(data['ext_data']): if len(data['label']) + len( ext_data['label']) > self.max_text_length: break concat_ratio = data['img'].shape[1] / data['img'].shape[ 0] + ext_data['img'].shape[1] / ext_data['img'].shape[0] if concat_ratio > self.max_wh_ratio: break data = self.merge_ext_data(data, ext_data) data.pop('ext_data') return data @PIPELINES.register_module() class RecAug(object): """data augmentation function for ocr recognition """ def __init__(self, use_tia=True, aug_prob=0.4, **kwargs): """ Args: use_tia (bool, optional): whether make tia augmentation. Defaults to True. aug_prob (float, optional): the probability were do data augmentation. Defaults to 0.4. """ self.use_tia = use_tia self.aug_prob = aug_prob def __call__(self, data): img = data['img'] img = warp(img, 10, self.use_tia, self.aug_prob) data['img'] = img return data def flag(): """ flag """ return 1 if random.random() > 0.5000001 else -1 def cvtColor(img): """ cvtColor """ hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) delta = 0.001 * random.random() * flag() hsv[:, :, 2] = hsv[:, :, 2] * (1 + delta) new_img = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) return new_img def blur(img): """ blur """ h, w, _ = img.shape if h > 10 and w > 10: return cv2.GaussianBlur(img, (5, 5), 1) else: return img def jitter(img): """ jitter """ w, h, _ = img.shape if h > 10 and w > 10: thres = min(w, h) s = int(random.random() * thres * 0.01) src_img = img.copy() for i in range(s): img[i:, i:, :] = src_img[:w - i, :h - i, :] return img else: return img def add_gasuss_noise(image, mean=0, var=0.1): """ Gasuss noise """ noise = np.random.normal(mean, var**0.5, image.shape) out = image + 0.5 * noise out = np.clip(out, 0, 255) out = np.uint8(out) return out def get_crop(image): """ random crop """ h, w, _ = image.shape top_min = 1 top_max = 8 top_crop = int(random.randint(top_min, top_max)) top_crop = min(top_crop, h - 1) crop_img = image.copy() ratio = random.randint(0, 1) if ratio: crop_img = crop_img[top_crop:h, :, :] else: crop_img = crop_img[0:h - top_crop, :, :] return crop_img class Config: """ Config """ def __init__(self, use_tia): self.anglex = random.random() * 30 self.angley = random.random() * 15 self.anglez = random.random() * 10 self.fov = 42 self.r = 0 self.shearx = random.random() * 0.3 self.sheary = random.random() * 0.05 self.borderMode = cv2.BORDER_REPLICATE self.use_tia = use_tia def make(self, w, h, ang): """ make """ self.anglex = random.random() * 5 * flag() self.angley = random.random() * 5 * flag() self.anglez = -1 * random.random() * int(ang) * flag() self.fov = 42 self.r = 0 self.shearx = 0 self.sheary = 0 self.borderMode = cv2.BORDER_REPLICATE self.w = w self.h = h self.perspective = self.use_tia self.stretch = self.use_tia self.distort = self.use_tia self.crop = True self.affine = False self.reverse = True self.noise = True self.jitter = True self.blur = True self.color = True def rad(x): """ rad """ return x * np.pi / 180 def get_warpR(config): """ get_warpR """ anglex, angley, anglez, fov, w, h, r = \ config.anglex, config.angley, config.anglez, config.fov, config.w, config.h, config.r if w > 69 and w < 112: anglex = anglex * 1.5 z = np.sqrt(w**2 + h**2) / 2 / np.tan(rad(fov / 2)) # Homogeneous coordinate transformation matrix rx = np.array( [[1, 0, 0, 0], [0, np.cos(rad(anglex)), -np.sin(rad(anglex)), 0], [0, -np.sin(rad(anglex)), np.cos(rad(anglex)), 0], [0, 0, 0, 1]], np.float32) ry = np.array([[np.cos(rad(angley)), 0, np.sin(rad(angley)), 0], [0, 1, 0, 0], [ -np.sin(rad(angley)), 0, np.cos(rad(angley)), 0, ], [0, 0, 0, 1]], np.float32) rz = np.array( [[np.cos(rad(anglez)), np.sin(rad(anglez)), 0, 0], [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) r = rx.dot(ry).dot(rz) # generate 4 points pcenter = np.array([h / 2, w / 2, 0, 0], np.float32) p1 = np.array([0, 0, 0, 0], np.float32) - pcenter p2 = np.array([w, 0, 0, 0], np.float32) - pcenter p3 = np.array([0, h, 0, 0], np.float32) - pcenter p4 = np.array([w, h, 0, 0], np.float32) - pcenter dst1 = r.dot(p1) dst2 = r.dot(p2) dst3 = r.dot(p3) dst4 = r.dot(p4) list_dst = np.array([dst1, dst2, dst3, dst4]) org = np.array([[0, 0], [w, 0], [0, h], [w, h]], np.float32) dst = np.zeros((4, 2), np.float32) # Project onto the image plane dst[:, 0] = list_dst[:, 0] * z / (z - list_dst[:, 2]) + pcenter[0] dst[:, 1] = list_dst[:, 1] * z / (z - list_dst[:, 2]) + pcenter[1] warpR = cv2.getPerspectiveTransform(org, dst) dst1, dst2, dst3, dst4 = dst r1 = int(min(dst1[1], dst2[1])) r2 = int(max(dst3[1], dst4[1])) c1 = int(min(dst1[0], dst3[0])) c2 = int(max(dst2[0], dst4[0])) try: ratio = min(1.0 * h / (r2 - r1), 1.0 * w / (c2 - c1)) dx = -c1 dy = -r1 T1 = np.float32([[1., 0, dx], [0, 1., dy], [0, 0, 1.0 / ratio]]) ret = T1.dot(warpR) except: ratio = 1.0 T1 = np.float32([[1., 0, 0], [0, 1., 0], [0, 0, 1.]]) ret = T1 return ret, (-r1, -c1), ratio, dst def get_warpAffine(config): """ get_warpAffine """ anglez = config.anglez rz = np.array( [[np.cos(rad(anglez)), np.sin(rad(anglez)), 0], [-np.sin(rad(anglez)), np.cos(rad(anglez)), 0]], np.float32) return rz def warp(img, ang, use_tia=True, prob=0.4): """ warp """ h, w, _ = img.shape config = Config(use_tia=use_tia) config.make(w, h, ang) new_img = img if config.distort: img_height, img_width = img.shape[0:2] if random.random() <= prob and img_height >= 20 and img_width >= 20: new_img = tia_distort(new_img, random.randint(3, 6)) if config.stretch: img_height, img_width = img.shape[0:2] if random.random() <= prob and img_height >= 20 and img_width >= 20: new_img = tia_stretch(new_img, random.randint(3, 6)) if config.perspective: if random.random() <= prob: new_img = tia_perspective(new_img) if config.crop: img_height, img_width = img.shape[0:2] if random.random() <= prob and img_height >= 20 and img_width >= 20: new_img = get_crop(new_img) if config.blur: if random.random() <= prob: new_img = blur(new_img) if config.color: if random.random() <= prob: new_img = cvtColor(new_img) if config.jitter: new_img = jitter(new_img) if config.noise: if random.random() <= prob: new_img = add_gasuss_noise(new_img) if config.reverse: if random.random() <= prob: new_img = 255 - new_img return new_img class WarpMLS: def __init__(self, src, src_pts, dst_pts, dst_w, dst_h, trans_ratio=1.): self.src = src self.src_pts = src_pts self.dst_pts = dst_pts self.pt_count = len(self.dst_pts) self.dst_w = dst_w self.dst_h = dst_h self.trans_ratio = trans_ratio self.grid_size = 100 self.rdx = np.zeros((self.dst_h, self.dst_w)) self.rdy = np.zeros((self.dst_h, self.dst_w)) @staticmethod def __bilinear_interp(x, y, v11, v12, v21, v22): return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 * (1 - y) + v22 * y) * x def generate(self): self.calc_delta() return self.gen_img() def calc_delta(self): w = np.zeros(self.pt_count, dtype=np.float32) if self.pt_count < 2: return i = 0 while 1: if self.dst_w <= i < self.dst_w + self.grid_size - 1: i = self.dst_w - 1 elif i >= self.dst_w: break j = 0 while 1: if self.dst_h <= j < self.dst_h + self.grid_size - 1: j = self.dst_h - 1 elif j >= self.dst_h: break sw = 0 swp = np.zeros(2, dtype=np.float32) swq = np.zeros(2, dtype=np.float32) new_pt = np.zeros(2, dtype=np.float32) cur_pt = np.array([i, j], dtype=np.float32) k = 0 for k in range(self.pt_count): if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]: break w[k] = 1. / ((i - self.dst_pts[k][0]) * (i - self.dst_pts[k][0]) + (j - self.dst_pts[k][1]) * (j - self.dst_pts[k][1])) sw += w[k] swp = swp + w[k] * np.array(self.dst_pts[k]) swq = swq + w[k] * np.array(self.src_pts[k]) if k == self.pt_count - 1: pstar = 1 / sw * swp qstar = 1 / sw * swq miu_s = 0 for k in range(self.pt_count): if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]: continue pt_i = self.dst_pts[k] - pstar miu_s += w[k] * np.sum(pt_i * pt_i) cur_pt -= pstar cur_pt_j = np.array([-cur_pt[1], cur_pt[0]]) for k in range(self.pt_count): if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]: continue pt_i = self.dst_pts[k] - pstar pt_j = np.array([-pt_i[1], pt_i[0]]) tmp_pt = np.zeros(2, dtype=np.float32) tmp_pt[0] = np.sum( pt_i * cur_pt) * self.src_pts[k][0] - np.sum( pt_j * cur_pt) * self.src_pts[k][1] tmp_pt[1] = -np.sum(pt_i * cur_pt_j) * self.src_pts[k][ 0] + np.sum(pt_j * cur_pt_j) * self.src_pts[k][1] tmp_pt *= (w[k] / miu_s) new_pt += tmp_pt new_pt += qstar else: new_pt = self.src_pts[k] self.rdx[j, i] = new_pt[0] - i self.rdy[j, i] = new_pt[1] - j j += self.grid_size i += self.grid_size def gen_img(self): src_h, src_w = self.src.shape[:2] dst = np.zeros_like(self.src, dtype=np.float32) for i in np.arange(0, self.dst_h, self.grid_size): for j in np.arange(0, self.dst_w, self.grid_size): ni = i + self.grid_size nj = j + self.grid_size w = h = self.grid_size if ni >= self.dst_h: ni = self.dst_h - 1 h = ni - i + 1 if nj >= self.dst_w: nj = self.dst_w - 1 w = nj - j + 1 di = np.reshape(np.arange(h), (-1, 1)) dj = np.reshape(np.arange(w), (1, -1)) delta_x = self.__bilinear_interp(di / h, dj / w, self.rdx[i, j], self.rdx[i, nj], self.rdx[ni, j], self.rdx[ni, nj]) delta_y = self.__bilinear_interp(di / h, dj / w, self.rdy[i, j], self.rdy[i, nj], self.rdy[ni, j], self.rdy[ni, nj]) nx = j + dj + delta_x * self.trans_ratio ny = i + di + delta_y * self.trans_ratio nx = np.clip(nx, 0, src_w - 1) ny = np.clip(ny, 0, src_h - 1) nxi = np.array(np.floor(nx), dtype=np.int32) nyi = np.array(np.floor(ny), dtype=np.int32) nxi1 = np.array(np.ceil(nx), dtype=np.int32) nyi1 = np.array(np.ceil(ny), dtype=np.int32) if len(self.src.shape) == 3: x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3)) y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3)) else: x = ny - nyi y = nx - nxi dst[i:i + h, j:j + w] = self.__bilinear_interp(x, y, self.src[nyi, nxi], self.src[nyi, nxi1], self.src[nyi1, nxi], self.src[nyi1, nxi1]) dst = np.clip(dst, 0, 255) dst = np.array(dst, dtype=np.uint8) return dst def tia_distort(src, segment=4): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut // 3 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append( [img_w - np.random.randint(thresh), np.random.randint(thresh)]) dst_pts.append( [img_w - np.random.randint(thresh), img_h - np.random.randint(thresh)]) dst_pts.append( [np.random.randint(thresh), img_h - np.random.randint(thresh)]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([ cut * cut_idx + np.random.randint(thresh) - half_thresh, np.random.randint(thresh) - half_thresh ]) dst_pts.append([ cut * cut_idx + np.random.randint(thresh) - half_thresh, img_h + np.random.randint(thresh) - half_thresh ]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def tia_stretch(src, segment=4): img_h, img_w = src.shape[:2] cut = img_w // segment thresh = cut * 4 // 5 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, 0]) dst_pts.append([img_w, 0]) dst_pts.append([img_w, img_h]) dst_pts.append([0, img_h]) half_thresh = thresh * 0.5 for cut_idx in np.arange(1, segment, 1): move = np.random.randint(thresh) - half_thresh src_pts.append([cut * cut_idx, 0]) src_pts.append([cut * cut_idx, img_h]) dst_pts.append([cut * cut_idx + move, 0]) dst_pts.append([cut * cut_idx + move, img_h]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst def tia_perspective(src): img_h, img_w = src.shape[:2] thresh = img_h // 2 src_pts = list() dst_pts = list() src_pts.append([0, 0]) src_pts.append([img_w, 0]) src_pts.append([img_w, img_h]) src_pts.append([0, img_h]) dst_pts.append([0, np.random.randint(thresh)]) dst_pts.append([img_w, np.random.randint(thresh)]) dst_pts.append([img_w, img_h - np.random.randint(thresh)]) dst_pts.append([0, img_h - np.random.randint(thresh)]) trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h) dst = trans.generate() return dst @PIPELINES.register_module() class RecResizeImg(object): def __init__( self, image_shape, infer_mode=False, character_dict_path='./easycv/datasets/ocr/dict/ppocr_keys_v1.txt', padding=True, **kwargs): self.image_shape = image_shape self.infer_mode = infer_mode self.character_dict_path = character_dict_path self.padding = padding def __call__(self, data): img = data['img'] if self.infer_mode and self.character_dict_path is not None: norm_img, valid_ratio = resize_norm_img_chinese( img, self.image_shape) else: norm_img, valid_ratio = resize_norm_img(img, self.image_shape, self.padding) data['img'] = norm_img data['valid_ratio'] = valid_ratio return data def resize_norm_img(img, image_shape, padding=True): imgC, imgH, imgW = image_shape h = img.shape[0] w = img.shape[1] if not padding: resized_image = cv2.resize( img, (imgW, imgH), interpolation=cv2.INTER_LINEAR) resized_w = imgW else: ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') if image_shape[0] == 1: resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] else: # resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image = resized_image / 255 resized_image -= 0.5 resized_image /= 0.5 # padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) # padding_im[:, :, 0:resized_w] = resized_image padding_im = np.zeros((imgH, imgW, imgC), dtype=np.float32) padding_im[:, 0:resized_w, :] = resized_image valid_ratio = min(1.0, float(resized_w / imgW)) return padding_im, valid_ratio def resize_norm_img_chinese(img, image_shape): imgC, imgH, imgW = image_shape # todo: change to 0 and modified image shape max_wh_ratio = imgW * 1.0 / imgH h, w = img.shape[0], img.shape[1] ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, ratio) imgW = int(imgH * max_wh_ratio) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') if image_shape[0] == 1: resized_image = resized_image / 255 resized_image = resized_image[np.newaxis, :] else: # resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image = resized_image / 255 resized_image -= 0.5 resized_image /= 0.5 # padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) # padding_im[:, :, 0:resized_w] = resized_image padding_im = np.zeros((imgH, imgW, imgC), dtype=np.float32) padding_im[:, 0:resized_w, :] = resized_image valid_ratio = min(1.0, float(resized_w / imgW)) return padding_im, valid_ratio @PIPELINES.register_module() class ClsResizeImg(object): def __init__(self, img_shape, **kwargs): self.img_shape = img_shape def __call__(self, data): img = data['img'] norm_img, _ = resize_norm_img(img, self.img_shape) data['img'] = norm_img return data