{ "cells": [ { "cell_type": "markdown", "id": "2f669eac-7d21-4647-9a78-3cdaaef0de88", "metadata": {}, "source": [ "# EasyCV图像检测-YOLOX\n", "本文将以[YOLOX](https://arxiv.org/abs/2107.08430)模型为例,介绍如何基于easyCV进行目标检测模型训练和预测" ] }, { "cell_type": "markdown", "id": "ed0d2eba-5b7f-4bab-aec6-de9b29fc4c00", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "## 运行环境要求\n", "\n", "PAI-Pytorch镜像 or 原生Pytorch1.5+以上环境 GPU机器, 内存32G以上" ] }, { "cell_type": "markdown", "id": "b6507334-07ad-400a-9e10-1a8176108b7f", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "## 安装依赖包\n", "\n", "注: 在PAI-DSW docker中无需安装相关依赖,可跳过此部分 在本地notebook环境中执行\n" ] }, { "cell_type": "markdown", "id": "8c5788b0-524b-4cf7-9628-aae6ac44f462", "metadata": {}, "source": [ "1、 首先,安装pytorch和对应版本的torchvision,支持Pytorch1.5.1以上版本" ] }, { "cell_type": "code", "execution_count": null, "id": "101d0cd7-64be-4234-b028-0c2f37714ac9", "metadata": { "tags": [] }, "outputs": [], "source": [ "# install pytorch and torch vision\n", "! conda install --yes pytorch==1.10.0 torchvision==0.11.0 -c pytorch" ] }, { "cell_type": "markdown", "id": "668ce563-9c7e-4c33-8600-be715f73c1d6", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "2、 获取torch和cuda版本,安装对应版本的mmcv和nvidia-dali" ] }, { "cell_type": "code", "execution_count": null, "id": "9fa89683-efd7-459f-ae47-aeb304ead4fa", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "outputs": [], "source": [ "import torch\n", "import os\n", "os.environ['CUDA']='cu' + torch.version.cuda.replace('.', '')\n", "os.environ['Torch']='torch'+torch.version.__version__.replace('+PAI', '')\n", "!echo \"cuda version: $CUDA\"\n", "!echo \"pytorch version: $Torch\"" ] }, { "cell_type": "code", "execution_count": null, "id": "ee4a64b7-1571-43b4-b869-b7d5bbd414ad", "metadata": { "tags": [] }, "outputs": [], "source": [ "# install some python deps\n", "! pip install mmcv-full==1.4.4 -f https://download.openmmlab.com/mmcv/dist/${CUDA}/${Torch}/index.html\n", "! pip install http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/third_party/nvidia_dali_cuda100-0.25.0-1535750-py3-none-manylinux2014_x86_64.whl" ] }, { "cell_type": "markdown", "id": "374fbe2e-c421-4aaa-a8fd-df625c060ef1", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "3、 安装EasyCV算法包" ] }, { "cell_type": "code", "execution_count": null, "id": "e234b8ce-7a66-44ff-a013-0029c61d7763", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "outputs": [], "source": [ "pip install pai-easycv" ] }, { "cell_type": "markdown", "id": "0aa1172e-c0d3-4b43-9e60-e373a3498af0", "metadata": { "tags": [] }, "source": [ "4、 简单验证" ] }, { "cell_type": "code", "execution_count": null, "id": "ad5ef3ff-1d2e-483e-afb2-1d37bc93e1c9", "metadata": {}, "outputs": [], "source": [ "from easycv.apis import *" ] }, { "cell_type": "markdown", "id": "75ce9cce-173b-4c00-af2e-ac55e0185038", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "## 图像检测模型训练&预测" ] }, { "cell_type": "markdown", "id": "026ac411-d9e5-4cfc-b3bb-52baab3d0dd8", "metadata": {}, "source": [ "### 数据准备\n", "\n", "你可以下载[COCO2017](https://cocodataset.org/#download)数据,也可以使用我们提供了示例COCO数据" ] }, { "cell_type": "code", "execution_count": null, "id": "1095a6a5-776a-4df4-82e7-547f49edd0ae", "metadata": {}, "outputs": [], "source": [ "! wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/small_coco_demo/small_coco_demo.tar.gz && tar -zxf small_coco_demo.tar.gz" ] }, { "cell_type": "markdown", "id": "ae6ae669-2ba7-440d-a3fe-4b698d48b031", "metadata": {}, "source": [ "重命名数据文件,使其和COCO数据格式完全一致" ] }, { "cell_type": "code", "execution_count": null, "id": "36eedef5-8a91-421e-aacb-b2f3448f8939", "metadata": {}, "outputs": [], "source": [ "!mkdir -p data/ && mv small_coco_demo data/coco" ] }, { "cell_type": "markdown", "id": "47dbb359-4594-42ab-be8b-7d2be672388e", "metadata": {}, "source": [ "data/coco格式如下\n", "\n", "```shell\n", "data/coco/\n", "├── annotations\n", "│ ├── instances_train2017.json\n", "│ └── instances_val2017.json\n", "├── train2017\n", "│ ├── 000000005802.jpg\n", "│ ├── 000000060623.jpg\n", "│ ├── 000000086408.jpg\n", "│ ├── 000000118113.jpg\n", "│ ├── 000000184613.jpg\n", "│ ├── 000000193271.jpg\n", "│ ├── 000000222564.jpg\n", "│ ...\n", "│ └── 000000574769.jpg\n", "└── val2017\n", " ├── 000000006818.jpg\n", " ├── 000000017627.jpg\n", " ├── 000000037777.jpg\n", " ├── 000000087038.jpg\n", " ├── 000000174482.jpg\n", " ├── 000000181666.jpg\n", " ├── 000000184791.jpg\n", " ├── 000000252219.jpg\n", " ...\n", " └── 000000522713.jpg\n", "```" ] }, { "cell_type": "markdown", "id": "b9cc2e3f-faf7-4d44-841d-e3d32eaa09b8", "metadata": {}, "source": [ "### 模型训练" ] }, { "cell_type": "markdown", "id": "b241a92d-eb9b-47d7-83d6-c11fef2292f9", "metadata": {}, "source": [ "下载示例配置文件, 进行YOLOX-S模型训练" ] }, { "cell_type": "code", "execution_count": null, "id": "5dfc8556-ae61-4921-9748-d1169b12809a", "metadata": {}, "outputs": [], "source": [ "! rm -rf yolox_s_8xb16_300e_coco.py\n", "! wget https://raw.githubusercontent.com/alibaba/EasyCV/master/configs/detection/yolox/yolox_s_8xb16_300e_coco.py" ] }, { "cell_type": "markdown", "id": "4c63acf1-35ef-478f-949e-9fd45e932ae3", "metadata": {}, "source": [ "为了适配小数据,我们对配置文件yolox_s_8xb16_300e_coco.py做如下字段的修改,减少训练epoch数目,加大打印日志的频率\n", "\n", "```python\n", "\n", "total_epochs = 3\n", "\n", "#optimizer.lr -> 0.0002\n", "optimizer = dict(\n", " type='SGD', lr=0.0002, momentum=0.9, weight_decay=5e-4, nesterov=True)\n", "\n", "# log_config.interval 1\n", "log_config = dict(interval=1)\n", "\n", "```\n", "\n", "注意: 如果是使用COCO完整数据训练,为了保证效果,建议使用单机8卡进行训练; 如果要使用单卡训练,建议降低学习率`optimizer.lr`\n", "\n", "为了保证模型效果,我们在[预训练模型](http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection/yolox_s_bs16_lr002/epoch_300.pth)基础上finetune, 执行如下命令启动训练" ] }, { "cell_type": "code", "execution_count": null, "id": "b1fcfaef-dacd-4fd8-9c6a-01d8de66e179", "metadata": { "scrolled": true, "tags": [] }, "outputs": [], "source": [ "!python -m easycv.tools.train yolox_s_8xb16_300e_coco.py --work_dir work_dir/detection/yolox/yolox_s_8xb16_300e_coco --load_from http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/EasyCV/modelzoo/detection/yolox_s_bs16_lr002/epoch_300.pth" ] }, { "cell_type": "markdown", "id": "2d28eba0-3ee5-4348-b6b1-a85363abe411", "metadata": {}, "source": [ "### 导出模型\n", "导出YOLOX 模型用于预测, 执行如下命令查看训练产生的模型文件" ] }, { "cell_type": "code", "execution_count": null, "id": "984314b2-b076-4c46-9216-850e8a13896b", "metadata": {}, "outputs": [], "source": [ "! ls work_dir/detection/yolox/yolox_s_8xb16_300e_coco/*.pth" ] }, { "cell_type": "markdown", "id": "9f5e6d36-e527-4789-ad7c-581364aa4e67", "metadata": {}, "source": [ "在导出模型前,需要对配置文件进行修改,指定nms的得分阈值\n", "\n", "model.test_conf 0.01 -> 0.5\n", "\n", "```python\n", "model = dict(\n", " type='YOLOX',\n", " num_classes=80,\n", " model_type='s', # s m l x tiny nano\n", " test_conf=0.5,\n", " nms_thre=0.65)\n", "```\n", "\n", "执行如下命令进行模型导出" ] }, { "cell_type": "code", "execution_count": null, "id": "f92e15f5-9148-4ac5-b828-962ecfff137e", "metadata": {}, "outputs": [], "source": [ "! cp yolox_s_8xb16_300e_coco.py yolox_s_8xb16_300e_coco_export.py && sed -i 's#test_conf=0.01#test_conf=0.5#g' yolox_s_8xb16_300e_coco_export.py\n", "!python -m easycv.tools.export yolox_s_8xb16_300e_coco_export.py work_dir/detection/yolox/yolox_s_8xb16_300e_coco/epoch_30.pth work_dir/detection/yolox/yolox_s_8xb16_300e_coco/yolox_export.pth" ] }, { "cell_type": "markdown", "id": "78251956-7a06-4b05-a390-259d8cf1a3be", "metadata": {}, "source": [ "### 模型预测\n", "下载测试图片" ] }, { "cell_type": "code", "execution_count": null, "id": "0409bbcd-8ea0-4341-8cb2-d7d728f4fb31", "metadata": {}, "outputs": [], "source": [ "!wget http://pai-vision-data-hz.oss-cn-zhangjiakou.aliyuncs.com/data/small_coco_demo/val2017/000000017627.jpg" ] }, { "cell_type": "code", "execution_count": null, "id": "9c201d92-159a-46db-b152-573e3aad36c2", "metadata": {}, "outputs": [], "source": [ "import cv2\n", "from easycv.predictors import TorchYoloXPredictor\n", "\n", "output_ckpt = 'work_dir/detection/yolox/yolox_s_8xb16_300e_coco/yolox_export.pth'\n", "detector = TorchYoloXPredictor(output_ckpt)\n", "\n", "img = cv2.imread('000000017627.jpg')\n", "img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n", "output = detector.predict([img])\n", "print(output)" ] }, { "cell_type": "code", "execution_count": null, "id": "a44b291c-bcd3-4f65-b2ab-0359dfc6e246", "metadata": {}, "outputs": [], "source": [ "# view detection results\n", "\n", "%matplotlib inline\n", "from matplotlib import pyplot as plt\n", "image = img.copy()\n", "for box, cls_name in zip(output[0]['detection_boxes'], output[0]['detection_class_names']):\n", " # box is [x1,y1,x2,y2]\n", " box = [int(b) for b in box]\n", " image = cv2.rectangle(image, tuple(box[:2]), tuple(box[2:4]), (0,255,0), 2)\n", " cv2.putText(image, cls_name, (box[0], box[1]-5), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 2)\n", "plt.imshow(image)\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.12" } }, "nbformat": 4, "nbformat_minor": 5 }