_base_ = 'configs/base.py' data_all_list = 'data/cub/CUB_200_2011/meta/fine_cls/all.txt' data_root = 'data/cub/CUB_200_2011/images/' img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) data = dict( imgs_per_gpu=64, workers_per_gpu=2, extract=dict( type='RawDataset', data_source=dict( type='ClsSourceImageList', list_file=data_all_list, root=data_root), pipeline=[ dict(type='Resize', size=256), dict(type='CenterCrop', size=224), dict(type='ToTensor'), dict(type='Normalize', **img_norm_cfg), ])) # extract info # split_name = ["cub_train", "cub_val"] total_samples_num = 8565 part_num = 100 split_at = [*range(0, total_samples_num, part_num), total_samples_num] split_name = [*['train_idx%d' % i for i in range(len(split_at))], 'val']