_base_ = './segformer_b0_coco.py' CLASSES = [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner', 'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage', 'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter', 'cupboard', 'curtain', 'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', 'floor-other', 'floor-stone', 'floor-tile', 'floor-wood', 'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass', 'gravel', 'ground-other', 'hill', 'house', 'leaves', 'light', 'mat', 'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', 'paper', 'pavement', 'pillow', 'plant-other', 'plastic', 'platform', 'playingfield', 'railing', 'railroad', 'river', 'road', 'rock', 'roof', 'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs', 'stone', 'straw', 'structural-other', 'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick', 'wall-concrete', 'wall-other', 'wall-panel', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops', 'window-blind', 'window-other', 'wood' ] model = dict( pretrained= 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segformer/mit_b5_20220624-658746d9.pth', backbone=dict( embed_dims=64, num_layers=[3, 6, 40, 3], ), decode_head=dict( in_channels=[64, 128, 320, 512], channels=768, ), ) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) img_scale = (2048, 640) crop_size = (640, 640) train_pipeline = [ dict(type='MMResize', img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type='SegRandomCrop', crop_size=crop_size, cat_max_ratio=0.75), dict(type='MMRandomFlip', flip_ratio=0.5), dict(type='MMPhotoMetricDistortion'), dict(type='MMNormalize', **img_norm_cfg), dict(type='MMPad', size=crop_size, pad_val=dict(img=0, masks=0, seg=255)), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_semantic_seg'], meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')), ] test_pipeline = [ dict( type='MMMultiScaleFlipAug', img_scale=img_scale, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='MMResize', keep_ratio=True), dict(type='MMRandomFlip'), dict(type='MMNormalize', **img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict( type='Collect', keys=['img'], meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')), ]) ] data_root = './data/coco_stuff164k/' # dataset settings data_type = 'SegSourceRaw' data_root = 'data/VOCdevkit/VOC2012' train_img_root = data_root + 'JPEGImages' train_label_root = data_root + 'SegmentationClass' train_list_file = data_root + 'ImageSets/Segmentation/train.txt' val_img_root = data_root + 'JPEGImages' val_label_root = data_root + 'SegmentationClass' val_list_file = data_root + 'ImageSets/Segmentation/val.txt' test_batch_size = 2 data = dict( imgs_per_gpu=2, workers_per_gpu=2, train=dict( type='SegDataset', ignore_index=255, data_source=dict( type=data_type, img_suffix='.jpg', label_suffix='.png', img_root=train_img_root, label_root=train_label_root, split=train_list_file, classes=CLASSES, ), pipeline=train_pipeline), val=dict( imgs_per_gpu=test_batch_size, ignore_index=255, type='SegDataset', data_source=dict( type=data_type, img_suffix='.jpg', label_suffix='.png', img_root=val_img_root, label_root=val_label_root, split=val_list_file, classes=CLASSES, ), pipeline=test_pipeline), )