# Copyright (c) Alibaba, Inc. and its affiliates. import time from collections.abc import Sequence import numpy as np from easycv.datasets.registry import PIPELINES from easycv.file.image import load_image from easycv.framework.errors import TypeError from easycv.utils.registry import build_from_cfg @PIPELINES.register_module() class Compose(object): """Compose a data pipeline with a sequence of transforms. Args: transforms (list[dict | callable]): Either config dicts of transforms or transform objects. """ def __init__(self, transforms, profiling=False): assert isinstance(transforms, Sequence) self.profiling = profiling self.transforms = [] for transform in transforms: if isinstance(transform, dict): transform = build_from_cfg(transform, PIPELINES) self.transforms.append(transform) elif callable(transform): self.transforms.append(transform) else: raise TypeError('transform must be callable or a dict, but got' f' {type(transform)}') def __call__(self, data): for t in self.transforms: if self.profiling: start = time.time() data = t(data) if self.profiling: print(f'{t} time {time.time()-start}') if data is None: return None return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += f'\n {t}' format_string += '\n)' return format_string @PIPELINES.register_module() class LoadImage: """Load an image from file or numpy or PIL object. Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. """ def __init__(self, to_float32=False, mode='bgr'): self.to_float32 = to_float32 self.mode = mode def __call__(self, results): """Call functions to load image and get image meta information. Returns: dict: The dict contains loaded image and meta information. """ filename = results.get('filename', None) img = results.get('img', None) if img is not None: if not isinstance(img, np.ndarray): img = np.asarray(img, dtype=np.uint8) else: assert filename is not None, 'Please provide "filename" or "img"!' img = load_image(filename, mode=self.mode) if self.to_float32: img = img.astype(np.float32) results['filename'] = filename results['img'] = img results['img_shape'] = img.shape results['ori_shape'] = img.shape results['ori_img_shape'] = img.shape results['img_fields'] = ['img'] return results def __repr__(self): repr_str = (f'{self.__class__.__name__}(' f'to_float32={self.to_float32}, ' f"mode='{self.mode}'") return repr_str