# Copyright (c) Alibaba, Inc. and its affiliates. from torch import nn from easycv.utils.registry import build_from_cfg from .registry import (ATTENTION, BACKBONES, FEEDFORWARD_NETWORK, FUSION_LAYERS, HEADS, LOSSES, MIDDLE_ENCODERS, MODELS, NECKS, POSITIONAL_ENCODING, TRANSFORMER, TRANSFORMER_LAYER, TRANSFORMER_LAYER_SEQUENCE, VOXEL_ENCODERS) def build(cfg, registry, default_args=None): if isinstance(cfg, list): modules = [ build_from_cfg(cfg_, registry, default_args) for cfg_ in cfg ] return nn.Sequential(*modules) else: return build_from_cfg(cfg, registry, default_args) def build_backbone(cfg): return build(cfg, BACKBONES) def build_neck(cfg): return build(cfg, NECKS) def build_head(cfg): return build(cfg, HEADS) def build_loss(cfg): return build(cfg, LOSSES) def build_model(cfg): return build(cfg, MODELS) def build_voxel_encoder(cfg): """Build voxel encoder.""" return VOXEL_ENCODERS.build(cfg) def build_middle_encoder(cfg): """Build middle level encoder.""" return MIDDLE_ENCODERS.build(cfg) def build_fusion_layer(cfg): """Build fusion layer.""" return FUSION_LAYERS.build(cfg) def build_transformer(cfg, default_args=None): """Builder for Transformer.""" return build_from_cfg(cfg, TRANSFORMER, default_args) def build_positional_encoding(cfg, default_args=None): """Builder for Position Encoding.""" return build_from_cfg(cfg, POSITIONAL_ENCODING, default_args) def build_attention(cfg, default_args=None): """Builder for attention.""" return build_from_cfg(cfg, ATTENTION, default_args) def build_feedforward_network(cfg, default_args=None): """Builder for feed-forward network (FFN).""" return build_from_cfg(cfg, FEEDFORWARD_NETWORK, default_args) def build_transformer_layer(cfg, default_args=None): """Builder for transformer layer.""" return build_from_cfg(cfg, TRANSFORMER_LAYER, default_args) def build_transformer_layer_sequence(cfg, default_args=None): """Builder for transformer encoder and transformer decoder.""" return build_from_cfg(cfg, TRANSFORMER_LAYER_SEQUENCE, default_args)