# Copyright (c) Alibaba, Inc. and its affiliates. from abc import ABCMeta, abstractmethod from torch.utils.data import Dataset from easycv.utils import build_from_cfg from ..builder import build_datasource from ..registry import PIPELINES from .pipelines.transforms import Compose class BaseDataset(Dataset, metaclass=ABCMeta): """Base Dataset """ def __init__(self, data_source, pipeline, profiling=False): self.data_source = build_datasource(data_source) pipeline = [build_from_cfg(p, PIPELINES) for p in pipeline] self.pipeline = Compose(pipeline, profiling=profiling) def __len__(self): return self.data_source.get_length() @abstractmethod def __getitem__(self, idx): pass @abstractmethod def evaluate(self, results, evaluators, logger=None, **kwargs): pass def visualize(self, results, **kwargs): """Visulaize the model output results on validation data. Returns: A dictionary If add image visualization, return dict containing images: List of visulaized images. img_metas: List of length number of test images, dict of image meta info, containing filename, img_shape, origin_img_shape, scale_factor and so on. """ return {}