# Copyright (c) OpenMMLab. All rights reserved. import math import numpy as np import torch import torch.nn as nn from mmcv.cnn import ConvModule, Scale from easycv.models.builder import HEADS, build_loss from easycv.models.detection.utils import (MlvlPointGenerator, batched_nms, bbox2result, distance2bbox, filter_scores_and_topk, select_single_mlvl) from easycv.models.utils import reduce_mean from easycv.utils.misc import multi_apply INF = 1e8 @HEADS.register_module() class FCOSHead(nn.Module): """Anchor-free head used in `FCOS `_. The FCOS head does not use anchor boxes. Instead bounding boxes are predicted at each pixel and a centerness measure is used to suppress low-quality predictions. Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training tricks used in official repo, which will bring remarkable mAP gains of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for more detail. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. strides (list[int] | list[tuple[int, int]]): Strides of points in multiple feature levels. Default: (4, 8, 16, 32, 64). regress_ranges (tuple[tuple[int, int]]): Regress range of multiple level points. center_sampling (bool): If true, use center sampling. Default: False. center_sample_radius (float): Radius of center sampling. Default: 1.5. norm_on_bbox (bool): If true, normalize the regression targets with FPN strides. Default: False. centerness_on_reg (bool): If true, position centerness on the regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. Default: False. conv_bias (bool | str): If specified as `auto`, it will be decided by the norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise False. Default: "auto". loss_cls (dict): Config of classification loss. loss_bbox (dict): Config of localization loss. loss_centerness (dict): Config of centerness loss. norm_cfg (dict): dictionary to construct and config norm layer. Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True). init_cfg (dict or list[dict], optional): Initialization config dict. Example: >>> self = FCOSHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_score, bbox_pred, centerness = self.forward(feats) >>> assert len(cls_score) == len(self.scales) """ # noqa: E501 def __init__(self, num_classes, in_channels, stacked_convs=4, feat_channels=256, strides=[8, 16, 32, 64, 128], regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512), (512, INF)), center_sampling=False, center_sample_radius=1.5, norm_on_bbox=False, centerness_on_reg=False, conv_cfg=None, loss_cls=dict( type='FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict(type='IoULoss', loss_weight=1.0), loss_centerness=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), norm_cfg=dict(type='GN', num_groups=32, requires_grad=True), conv_bias=True, test_cfg=dict( nms_pre=1000, min_bbox_size=0, score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100), **kwargs): super(FCOSHead, self).__init__() self.regress_ranges = regress_ranges self.center_sampling = center_sampling self.center_sample_radius = center_sample_radius self.norm_on_bbox = norm_on_bbox self.centerness_on_reg = centerness_on_reg self.num_classes = num_classes self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False) if self.use_sigmoid_cls: self.cls_out_channels = num_classes else: self.cls_out_channels = num_classes + 1 self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides assert conv_bias == 'auto' or isinstance(conv_bias, bool) self.conv_bias = conv_bias self.loss_cls = build_loss(loss_cls) self.loss_bbox = build_loss(loss_bbox) self.prior_generator = MlvlPointGenerator(strides) # In order to keep a more general interface and be consistent with # anchor_head. We can think of point like one anchor self.num_base_priors = self.prior_generator.num_base_priors[0] self.test_cfg = test_cfg self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self._init_layers() self.loss_centerness = build_loss(loss_centerness) def _init_layers(self): """Initialize layers of the head.""" self._init_cls_convs() self._init_reg_convs() self._init_predictor() self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) def _init_cls_convs(self): """Initialize classification conv layers of the head.""" self.cls_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels conv_cfg = self.conv_cfg self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=conv_cfg, norm_cfg=self.norm_cfg, bias=self.conv_bias)) def _init_reg_convs(self): """Initialize bbox regression conv layers of the head.""" self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels conv_cfg = self.conv_cfg self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=conv_cfg, norm_cfg=self.norm_cfg, bias=self.conv_bias)) def _init_predictor(self): """Initialize predictor layers of the head.""" self.conv_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): torch.nn.init.normal_(m.weight, std=0.01) if hasattr(m, 'bias') and m.bias is not None: nn.init.constant_(m.bias, 0) # initialize the bias for focal loss prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) torch.nn.init.constant_(self.conv_cls.bias, bias_value) def forward(self, feats): """Forward features from the upstream network. Args: feats (tuple[Tensor]): Features from the upstream network, each is a 4D-tensor. Returns: tuple: cls_scores (list[Tensor]): Box scores for each scale level, \ each is a 4D-tensor, the channel number is \ num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each \ scale level, each is a 4D-tensor, the channel number is \ num_points * 4. centernesses (list[Tensor]): centerness for each scale level, \ each is a 4D-tensor, the channel number is num_points * 1. """ return multi_apply(self.forward_single, feats, self.scales, self.strides) def forward_single(self, x, scale, stride): """Forward features of a single scale level. Args: x (Tensor): FPN feature maps of the specified stride. scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize the bbox prediction. stride (int): The corresponding stride for feature maps, only used to normalize the bbox prediction when self.norm_on_bbox is True. Returns: tuple: scores for each class, bbox predictions and centerness \ predictions of input feature maps. """ cls_feat = x reg_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.conv_cls(cls_feat) for reg_layer in self.reg_convs: reg_feat = reg_layer(reg_feat) bbox_pred = self.conv_reg(reg_feat) if self.centerness_on_reg: centerness = self.conv_centerness(reg_feat) else: centerness = self.conv_centerness(cls_feat) # scale the bbox_pred of different level # float to avoid overflow when enabling FP16 bbox_pred = scale(bbox_pred).float() if self.norm_on_bbox: # bbox_pred needed for gradient computation has been modified # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace # F.relu(bbox_pred) with bbox_pred.clamp(min=0) bbox_pred = bbox_pred.clamp(min=0) if not self.training: bbox_pred *= stride else: bbox_pred = bbox_pred.exp() return cls_score, bbox_pred, centerness def forward_train(self, x, img_metas, gt_bboxes, gt_labels=None, gt_bboxes_ignore=None, proposal_cfg=None, **kwargs): outs = self.forward(x) if gt_labels is None: loss_inputs = outs + (gt_bboxes, img_metas) else: loss_inputs = outs + (gt_bboxes, gt_labels, img_metas) losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore) return losses def forward_test(self, feats, img_metas, rescale=False): """Test function without test-time augmentation. Args: feats (tuple[torch.Tensor]): Multi-level features from the upstream network, each is a 4D-tensor. img_metas (list[dict]): List of image information. rescale (bool, optional): Whether to rescale the results. Defaults to False. Returns: list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is ``bboxes`` with shape (n, 5), where 5 represent (tl_x, tl_y, br_x, br_y, score). The shape of the second tensor in the tuple is ``labels`` with shape (n, ). """ outs = self.forward(feats) results_list = self.get_bboxes( *outs, img_metas=img_metas, rescale=True) results = [ bbox2result(det_bboxes, det_labels, self.num_classes) for det_bboxes, det_labels in results_list ] detection_boxes = [] detection_scores = [] detection_classes = [] for res_i in results: bbox_result = res_i bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None bboxes = bboxes[:, 0:4] if bboxes.shape[1] == 5 else bboxes assert bboxes.shape[1] == 4 detection_boxes.append(bboxes) detection_scores.append(scores) detection_classes.append(labels) assert len(img_metas) == 1 outputs = { 'detection_boxes': detection_boxes, 'detection_scores': detection_scores, 'detection_classes': detection_classes, 'img_metas': img_metas } return outputs def loss(self, cls_scores, bbox_preds, centernesses, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore=None): """Compute loss of the head. Args: cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes. bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4. centernesses (list[Tensor]): centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1. gt_bboxes (list[Tensor]): Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. gt_labels (list[Tensor]): class indices corresponding to each box img_metas (list[dict]): Meta information of each image, e.g., image size, scaling factor, etc. gt_bboxes_ignore (None | list[Tensor]): specify which bounding boxes can be ignored when computing the loss. Returns: dict[str, Tensor]: A dictionary of loss components. """ assert len(cls_scores) == len(bbox_preds) == len(centernesses) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] all_level_points = self.prior_generator.grid_priors( featmap_sizes, dtype=bbox_preds[0].dtype, device=bbox_preds[0].device) labels, bbox_targets = self.get_targets(all_level_points, gt_bboxes, gt_labels) num_imgs = cls_scores[0].size(0) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] flatten_bbox_preds = [ bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) for bbox_pred in bbox_preds ] flatten_centerness = [ centerness.permute(0, 2, 3, 1).reshape(-1) for centerness in centernesses ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_bbox_preds = torch.cat(flatten_bbox_preds) flatten_centerness = torch.cat(flatten_centerness) flatten_labels = torch.cat(labels) flatten_bbox_targets = torch.cat(bbox_targets) # repeat points to align with bbox_preds flatten_points = torch.cat( [points.repeat(num_imgs, 1) for points in all_level_points]) # FG cat_id: [0, num_classes -1], BG cat_id: num_classes bg_class_ind = self.num_classes pos_inds = ((flatten_labels >= 0) & (flatten_labels < bg_class_ind)).nonzero().reshape(-1) num_pos = torch.tensor( len(pos_inds), dtype=torch.float, device=bbox_preds[0].device) num_pos = max(reduce_mean(num_pos), 1.0) loss_cls = self.loss_cls( flatten_cls_scores, flatten_labels, avg_factor=num_pos) pos_bbox_preds = flatten_bbox_preds[pos_inds] pos_centerness = flatten_centerness[pos_inds] pos_bbox_targets = flatten_bbox_targets[pos_inds] pos_centerness_targets = self.centerness_target(pos_bbox_targets) # centerness weighted iou loss centerness_denorm = max( reduce_mean(pos_centerness_targets.sum().detach()), 1e-6) if len(pos_inds) > 0: pos_points = flatten_points[pos_inds] pos_decoded_bbox_preds = distance2bbox(pos_points, pos_bbox_preds) pos_decoded_target_preds = distance2bbox(pos_points, pos_bbox_targets) loss_bbox = self.loss_bbox( pos_decoded_bbox_preds, pos_decoded_target_preds, weight=pos_centerness_targets, avg_factor=centerness_denorm) loss_centerness = self.loss_centerness( pos_centerness, pos_centerness_targets, avg_factor=num_pos) else: loss_bbox = pos_bbox_preds.sum() loss_centerness = pos_centerness.sum() return dict( loss_cls=loss_cls, loss_bbox=loss_bbox, loss_centerness=loss_centerness) def get_targets(self, points, gt_bboxes_list, gt_labels_list): """Compute regression, classification and centerness targets for points in multiple images. Args: points (list[Tensor]): Points of each fpn level, each has shape (num_points, 2). gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image, each has shape (num_gt, 4). gt_labels_list (list[Tensor]): Ground truth labels of each box, each has shape (num_gt,). Returns: tuple: concat_lvl_labels (list[Tensor]): Labels of each level. \ concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \ level. """ assert len(points) == len(self.regress_ranges) num_levels = len(points) # expand regress ranges to align with points expanded_regress_ranges = [ points[i].new_tensor(self.regress_ranges[i])[None].expand_as( points[i]) for i in range(num_levels) ] # concat all levels points and regress ranges concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0) concat_points = torch.cat(points, dim=0) # the number of points per img, per lvl num_points = [center.size(0) for center in points] # get labels and bbox_targets of each image labels_list, bbox_targets_list = multi_apply( self._get_target_single, gt_bboxes_list, gt_labels_list, points=concat_points, regress_ranges=concat_regress_ranges, num_points_per_lvl=num_points) # split to per img, per level labels_list = [labels.split(num_points, 0) for labels in labels_list] bbox_targets_list = [ bbox_targets.split(num_points, 0) for bbox_targets in bbox_targets_list ] # concat per level image concat_lvl_labels = [] concat_lvl_bbox_targets = [] for i in range(num_levels): concat_lvl_labels.append( torch.cat([labels[i] for labels in labels_list])) bbox_targets = torch.cat( [bbox_targets[i] for bbox_targets in bbox_targets_list]) if self.norm_on_bbox: bbox_targets = bbox_targets / self.strides[i] concat_lvl_bbox_targets.append(bbox_targets) return concat_lvl_labels, concat_lvl_bbox_targets def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges, num_points_per_lvl): """Compute regression and classification targets for a single image.""" num_points = points.size(0) num_gts = gt_labels.size(0) if num_gts == 0: return gt_labels.new_full((num_points,), self.num_classes), \ gt_bboxes.new_zeros((num_points, 4)) areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * ( gt_bboxes[:, 3] - gt_bboxes[:, 1]) # TODO: figure out why these two are different # areas = areas[None].expand(num_points, num_gts) areas = areas[None].repeat(num_points, 1) regress_ranges = regress_ranges[:, None, :].expand( num_points, num_gts, 2) gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4) xs, ys = points[:, 0], points[:, 1] xs = xs[:, None].expand(num_points, num_gts) ys = ys[:, None].expand(num_points, num_gts) left = xs - gt_bboxes[..., 0] right = gt_bboxes[..., 2] - xs top = ys - gt_bboxes[..., 1] bottom = gt_bboxes[..., 3] - ys bbox_targets = torch.stack((left, top, right, bottom), -1) if self.center_sampling: # condition1: inside a `center bbox` radius = self.center_sample_radius center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2 center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2 center_gts = torch.zeros_like(gt_bboxes) stride = center_xs.new_zeros(center_xs.shape) # project the points on current lvl back to the `original` sizes lvl_begin = 0 for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl): lvl_end = lvl_begin + num_points_lvl stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius lvl_begin = lvl_end x_mins = center_xs - stride y_mins = center_ys - stride x_maxs = center_xs + stride y_maxs = center_ys + stride center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0], x_mins, gt_bboxes[..., 0]) center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1], y_mins, gt_bboxes[..., 1]) center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2], gt_bboxes[..., 2], x_maxs) center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3], gt_bboxes[..., 3], y_maxs) cb_dist_left = xs - center_gts[..., 0] cb_dist_right = center_gts[..., 2] - xs cb_dist_top = ys - center_gts[..., 1] cb_dist_bottom = center_gts[..., 3] - ys center_bbox = torch.stack( (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1) inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0 else: # condition1: inside a gt bbox inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0 # condition2: limit the regression range for each location max_regress_distance = bbox_targets.max(-1)[0] inside_regress_range = ( (max_regress_distance >= regress_ranges[..., 0]) & (max_regress_distance <= regress_ranges[..., 1])) # if there are still more than one objects for a location, # we choose the one with minimal area areas[inside_gt_bbox_mask == 0] = INF areas[inside_regress_range == 0] = INF min_area, min_area_inds = areas.min(dim=1) labels = gt_labels[min_area_inds] labels[min_area == INF] = self.num_classes # set as BG bbox_targets = bbox_targets[range(num_points), min_area_inds] return labels, bbox_targets def centerness_target(self, pos_bbox_targets): """Compute centerness targets. Args: pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape (num_pos, 4) Returns: Tensor: Centerness target. """ # only calculate pos centerness targets, otherwise there may be nan left_right = pos_bbox_targets[:, [0, 2]] top_bottom = pos_bbox_targets[:, [1, 3]] if len(left_right) == 0: centerness_targets = left_right[..., 0] else: centerness_targets = ( left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]) return torch.sqrt(centerness_targets) def get_bboxes(self, cls_scores, bbox_preds, score_factors=None, img_metas=None, cfg=None, rescale=False, with_nms=True, **kwargs): """Transform network outputs of a batch into bbox results. Note: When score_factors is not None, the cls_scores are usually multiplied by it then obtain the real score used in NMS, such as CenterNess in FCOS, IoU branch in ATSS. Args: cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W). bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W). score_factors (list[Tensor], Optional): Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Default None. img_metas (list[dict], Optional): Image meta info. Default None. cfg (mmcv.Config, Optional): Test / postprocessing configuration, if None, test_cfg would be used. Default None. rescale (bool): If True, return boxes in original image space. Default False. with_nms (bool): If True, do nms before return boxes. Default True. Returns: list[list[Tensor, Tensor]]: Each item in result_list is 2-tuple. The first item is an (n, 5) tensor, where the first 4 columns are bounding box positions (tl_x, tl_y, br_x, br_y) and the 5-th column is a score between 0 and 1. The second item is a (n,) tensor where each item is the predicted class label of the corresponding box. """ assert len(cls_scores) == len(bbox_preds) if score_factors is None: # e.g. Retina, FreeAnchor, Foveabox, etc. with_score_factors = False else: # e.g. FCOS, PAA, ATSS, AutoAssign, etc. with_score_factors = True assert len(cls_scores) == len(score_factors) num_levels = len(cls_scores) featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)] mlvl_priors = self.prior_generator.grid_priors( featmap_sizes, dtype=cls_scores[0].dtype, device=cls_scores[0].device) result_list = [] for img_id in range(len(img_metas)): img_meta = img_metas[img_id] cls_score_list = select_single_mlvl(cls_scores, img_id) bbox_pred_list = select_single_mlvl(bbox_preds, img_id) if with_score_factors: score_factor_list = select_single_mlvl(score_factors, img_id) else: score_factor_list = [None for _ in range(num_levels)] results = self._get_bboxes_single(cls_score_list, bbox_pred_list, score_factor_list, mlvl_priors, img_meta, cfg, rescale, with_nms, **kwargs) result_list.append(results) return result_list def _get_bboxes_single(self, cls_score_list, bbox_pred_list, score_factor_list, mlvl_priors, img_meta, cfg, rescale=False, with_nms=True, **kwargs): """Transform outputs of a single image into bbox predictions. Args: cls_score_list (list[Tensor]): Box scores from all scale levels of a single image, each item has shape (num_priors * num_classes, H, W). bbox_pred_list (list[Tensor]): Box energies / deltas from all scale levels of a single image, each item has shape (num_priors * 4, H, W). score_factor_list (list[Tensor]): Score factor from all scale levels of a single image, each item has shape (num_priors * 1, H, W). mlvl_priors (list[Tensor]): Each element in the list is the priors of a single level in feature pyramid. In all anchor-based methods, it has shape (num_priors, 4). In all anchor-free methods, it has shape (num_priors, 2) when `with_stride=True`, otherwise it still has shape (num_priors, 4). img_meta (dict): Image meta info. cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. Returns: tuple[Tensor]: Results of detected bboxes and labels. If with_nms is False and mlvl_score_factor is None, return mlvl_bboxes and mlvl_scores, else return mlvl_bboxes, mlvl_scores and mlvl_score_factor. Usually with_nms is False is used for aug test. If with_nms is True, then return the following format - det_bboxes (Tensor): Predicted bboxes with shape \ [num_bboxes, 5], where the first 4 columns are bounding \ box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ column are scores between 0 and 1. - det_labels (Tensor): Predicted labels of the corresponding \ box with shape [num_bboxes]. """ if score_factor_list[0] is None: # e.g. Retina, FreeAnchor, etc. with_score_factors = False else: # e.g. FCOS, PAA, ATSS, etc. with_score_factors = True cfg = self.test_cfg if cfg is None else cfg img_shape = img_meta['img_shape'] nms_pre = cfg.get('nms_pre', -1) mlvl_bboxes = [] mlvl_scores = [] mlvl_labels = [] if with_score_factors: mlvl_score_factors = [] else: mlvl_score_factors = None for level_idx, (cls_score, bbox_pred, score_factor, priors) in \ enumerate(zip(cls_score_list, bbox_pred_list, score_factor_list, mlvl_priors)): assert cls_score.size()[-2:] == bbox_pred.size()[-2:] bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) if with_score_factors: score_factor = score_factor.permute(1, 2, 0).reshape(-1).sigmoid() cls_score = cls_score.permute(1, 2, 0).reshape(-1, self.cls_out_channels) if self.use_sigmoid_cls: scores = cls_score.sigmoid() else: # remind that we set FG labels to [0, num_class-1] # since mmdet v2.0 # BG cat_id: num_class scores = cls_score.softmax(-1)[:, :-1] # After https://github.com/open-mmlab/mmdetection/pull/6268/, # this operation keeps fewer bboxes under the same `nms_pre`. # There is no difference in performance for most models. If you # find a slight drop in performance, you can set a larger # `nms_pre` than before. results = filter_scores_and_topk( scores, cfg.score_thr, nms_pre, dict(bbox_pred=bbox_pred, priors=priors)) scores, labels, keep_idxs, filtered_results = results bbox_pred = filtered_results['bbox_pred'] priors = filtered_results['priors'] if with_score_factors: score_factor = score_factor[keep_idxs] bboxes = distance2bbox(priors, bbox_pred, max_shape=img_shape) mlvl_bboxes.append(bboxes) mlvl_scores.append(scores) mlvl_labels.append(labels) if with_score_factors: mlvl_score_factors.append(score_factor) return self._bbox_post_process(mlvl_scores, mlvl_labels, mlvl_bboxes, img_meta['scale_factor'], cfg, rescale, with_nms, mlvl_score_factors, **kwargs) def _bbox_post_process(self, mlvl_scores, mlvl_labels, mlvl_bboxes, scale_factor, cfg, rescale=False, with_nms=True, mlvl_score_factors=None, **kwargs): """bbox post-processing method. The boxes would be rescaled to the original image scale and do the nms operation. Usually `with_nms` is False is used for aug test. Args: mlvl_scores (list[Tensor]): Box scores from all scale levels of a single image, each item has shape (num_bboxes, ). mlvl_labels (list[Tensor]): Box class labels from all scale levels of a single image, each item has shape (num_bboxes, ). mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale levels of a single image, each item has shape (num_bboxes, 4). scale_factor (ndarray, optional): Scale factor of the image arange as (w_scale, h_scale, w_scale, h_scale). cfg (mmcv.Config): Test / postprocessing configuration, if None, test_cfg would be used. rescale (bool): If True, return boxes in original image space. Default: False. with_nms (bool): If True, do nms before return boxes. Default: True. mlvl_score_factors (list[Tensor], optional): Score factor from all scale levels of a single image, each item has shape (num_bboxes, ). Default: None. Returns: tuple[Tensor]: Results of detected bboxes and labels. If with_nms is False and mlvl_score_factor is None, return mlvl_bboxes and mlvl_scores, else return mlvl_bboxes, mlvl_scores and mlvl_score_factor. Usually with_nms is False is used for aug test. If with_nms is True, then return the following format - det_bboxes (Tensor): Predicted bboxes with shape \ [num_bboxes, 5], where the first 4 columns are bounding \ box positions (tl_x, tl_y, br_x, br_y) and the 5-th \ column are scores between 0 and 1. - det_labels (Tensor): Predicted labels of the corresponding \ box with shape [num_bboxes]. """ assert len(mlvl_scores) == len(mlvl_bboxes) == len(mlvl_labels) mlvl_bboxes = torch.cat(mlvl_bboxes) if rescale: mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor) mlvl_scores = torch.cat(mlvl_scores) mlvl_labels = torch.cat(mlvl_labels) if mlvl_score_factors is not None: # TODO: Add sqrt operation in order to be consistent with # the paper. mlvl_score_factors = torch.cat(mlvl_score_factors) mlvl_scores = mlvl_scores * mlvl_score_factors if with_nms: if mlvl_bboxes.numel() == 0: det_bboxes = torch.cat([mlvl_bboxes, mlvl_scores[:, None]], -1) return det_bboxes, mlvl_labels det_bboxes, keep_idxs = batched_nms(mlvl_bboxes, mlvl_scores, mlvl_labels, cfg.nms) det_bboxes = det_bboxes[:cfg.max_per_img] det_labels = mlvl_labels[keep_idxs][:cfg.max_per_img] return det_bboxes, det_labels else: return mlvl_bboxes, mlvl_scores, mlvl_labels