# Copyright (c) Alibaba, Inc. and its affiliates. from functools import partial import mmcv import numpy as np from six.moves import map, zip def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True): num_imgs = tensor.size(0) mean = np.array(mean, dtype=np.float32) std = np.array(std, dtype=np.float32) imgs = [] for img_id in range(num_imgs): img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0) img = mmcv.imdenormalize( img, mean, std, to_bgr=to_rgb).astype(np.uint8) imgs.append(np.ascontiguousarray(img)) return imgs def multi_apply(func, *args, **kwargs): """Apply function to a list of arguments. Note: This function applies the ``func`` to multiple inputs and map the multiple outputs of the ``func`` into different list. Each list contains the same type of outputs corresponding to different inputs. Args: func (Function): A function that will be applied to a list of arguments Returns: tuple(list): A tuple containing multiple list, each list contains \ a kind of returned results by the function """ pfunc = partial(func, **kwargs) if kwargs else func map_results = map(pfunc, *args) return tuple(map(list, zip(*map_results))) def unmap(data, count, inds, fill=0): """ Unmap a subset of item (data) back to the original set of items (of size count) """ if data.dim() == 1: ret = data.new_full((count, ), fill) ret[inds] = data else: new_size = (count, ) + data.size()[1:] ret = data.new_full(new_size, fill) ret[inds, :] = data return ret def add_prefix(inputs, prefix): """Add prefix for dict key. Args: inputs (dict): The input dict with str keys. prefix (str): The prefix add to key name. Returns: dict: The dict with keys wrapped with ``prefix``. """ outputs = dict() for name, value in inputs.items(): outputs[f'{prefix}.{name}'] = value return outputs