# model settings model = dict( type='Detection', pretrained=True, backbone=dict( type='ResNet', depth=50, num_stages=4, out_indices=(2, 3, 4), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, style='pytorch'), head=dict( type='DINOHead', transformer=dict( type='DeformableTransformer', d_model=256, nhead=8, num_queries=900, num_encoder_layers=6, num_unicoder_layers=0, num_decoder_layers=6, dim_feedforward=2048, dropout=0.0, activation='relu', normalize_before=False, return_intermediate_dec=True, query_dim=4, num_patterns=0, modulate_hw_attn=True, # for deformable encoder deformable_encoder=True, deformable_decoder=True, num_feature_levels=4, enc_n_points=4, dec_n_points=4, # init query decoder_query_perturber=None, add_channel_attention=False, random_refpoints_xy=False, # two stage two_stage_type= 'standard', # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1'] two_stage_pat_embed=0, two_stage_add_query_num=0, two_stage_learn_wh=False, two_stage_keep_all_tokens=False, # evo of #anchors dec_layer_number=None, rm_dec_query_scale=True, rm_self_attn_layers=None, key_aware_type=None, # layer share layer_share_type=None, # for detach rm_detach=None, decoder_sa_type='sa', module_seq=['sa', 'ca', 'ffn'], # for dn embed_init_tgt=True, use_detached_boxes_dec_out=False), dn_components=dict( dn_number=100, dn_label_noise_ratio=0.5, # paper 0.5, release code 0.25 dn_box_noise_scale=1.0, dn_labelbook_size=80, ), num_classes=80, in_channels=[512, 1024, 2048], embed_dims=256, query_dim=4, num_queries=900, num_select=300, random_refpoints_xy=False, num_patterns=0, fix_refpoints_hw=-1, num_feature_levels=4, # two stage two_stage_type='standard', # ['no', 'standard'] two_stage_add_query_num=0, dec_pred_class_embed_share=True, dec_pred_bbox_embed_share=True, two_stage_class_embed_share=False, two_stage_bbox_embed_share=False, decoder_sa_type='sa', temperatureH=20, temperatureW=20, cost_dict=dict( cost_class=2, cost_bbox=5, cost_giou=2, ), weight_dict=dict(loss_ce=1, loss_bbox=5, loss_giou=2)))