# Copyright (c) Alibaba, Inc. and its affiliates.
import math

import torch
from torch.optim.optimizer import Optimizer

from easycv.framework.errors import ValueError


def centralized_gradient(x, use_gc=True, gc_conv_only=False):
    '''credit - https://github.com/Yonghongwei/Gradient-Centralization '''
    if use_gc:
        if gc_conv_only:
            if len(list(x.size())) > 3:
                x.add_(-x.mean(
                    dim=tuple(range(1, len(list(x.size())))), keepdim=True))
        else:
            if len(list(x.size())) > 1:
                x.add_(-x.mean(
                    dim=tuple(range(1, len(list(x.size())))), keepdim=True))
    return x


class Ranger(Optimizer):
    """
        Adam+LookAhead: refer to https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
    """

    def __init__(
            self,
            params,
            lr=1e-3,  # lr
            alpha=0.5,
            k=6,
            N_sma_threshhold=5,  # Ranger options
            betas=(.95, 0.999),
            eps=1e-5,
            weight_decay=0,  # Adam options
            use_gc=True,  # Gradient centralization on or off, applied to conv layers only or conv + fc layers
            gc_conv_only=False,
            gc_loc=True):

        # parameter checks
        if not 0.0 <= alpha <= 1.0:
            raise ValueError(f'Invalid slow update rate: {alpha}')
        if not 1 <= k:
            raise ValueError(f'Invalid lookahead steps: {k}')
        if not lr > 0:
            raise ValueError(f'Invalid Learning Rate: {lr}')
        if not eps > 0:
            raise ValueError(f'Invalid eps: {eps}')

        # parameter comments:
        # beta1 (momentum) of .95 seems to work better than .90...
        # N_sma_threshold of 5 seems better in testing than 4.
        # In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.

        # prep defaults and init torch.optim base
        defaults = dict(
            lr=lr,
            alpha=alpha,
            k=k,
            step_counter=0,
            betas=betas,
            N_sma_threshhold=N_sma_threshhold,
            eps=eps,
            weight_decay=weight_decay)
        super().__init__(params, defaults)

        # adjustable threshold
        self.N_sma_threshhold = N_sma_threshhold

        # look ahead params

        self.alpha = alpha
        self.k = k

        # radam buffer for state
        self.radam_buffer = [[None, None, None] for ind in range(10)]

        # gc on or off
        self.gc_loc = gc_loc
        self.use_gc = use_gc
        self.gc_conv_only = gc_conv_only
        # level of gradient centralization
        # self.gc_gradient_threshold = 3 if gc_conv_only else 1

        print(
            f'Ranger optimizer loaded. \nGradient Centralization usage = {self.use_gc}'
        )
        if (self.use_gc and not self.gc_conv_only):
            print('GC applied to both conv and fc layers')
        elif (self.use_gc and self.gc_conv_only):
            print('GC applied to conv layers only')

    def __getstate__(self):
        state = super(Ranger, self).__getstate__()
        state.update({
            'N_sma_threshhold': self.N_sma_threshhold,
            'alpha': self.alpha,
            'k': self.k,
            'radam_buffer': self.radam_buffer,
            'gc_loc': self.gc_loc,
            'use_gc': self.use_gc,
            'gc_conv_only': self.gc_conv_only
        })

        return state

    def __setstate__(self, state):
        print('set state called')
        super(Ranger, self).__setstate__(state)

    def step(self, closure=None):
        loss = None
        # note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
        # Uncomment if you need to use the actual closure...

        # if closure is not None:
        # loss = closure()

        # Evaluate averages and grad, update param tensors
        for group in self.param_groups:

            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data.float()

                if grad.is_sparse:
                    raise RuntimeError(
                        'Ranger optimizer does not support sparse gradients')

                p_data_fp32 = p.data.float()

                state = self.state[p]  # get state dict for this param

                if len(
                        state
                ) == 0:  # if first time to run...init dictionary with our desired entries
                    # if self.first_run_check==0:
                    # self.first_run_check=1
                    # print("Initializing slow buffer...should not see this at load from saved model!")
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p_data_fp32)
                    state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)

                    # look ahead weight storage now in state dict
                    state['slow_buffer'] = torch.empty_like(p.data)
                    state['slow_buffer'].copy_(p.data)

                else:
                    state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
                    state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
                        p_data_fp32)

                # begin computations
                exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
                beta1, beta2 = group['betas']

                # GC operation for Conv layers and FC layers
                # if grad.dim() > self.gc_gradient_threshold:
                #    grad.add_(-grad.mean(dim=tuple(range(1, grad.dim())), keepdim=True))
                if self.gc_loc:
                    grad = centralized_gradient(
                        grad,
                        use_gc=self.use_gc,
                        gc_conv_only=self.gc_conv_only)

                state['step'] += 1

                # compute variance mov avg
                exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

                # compute mean moving avg
                exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)

                buffered = self.radam_buffer[int(state['step'] % 10)]

                if state['step'] == buffered[0]:
                    N_sma, step_size = buffered[1], buffered[2]
                else:
                    buffered[0] = state['step']
                    beta2_t = beta2**state['step']
                    N_sma_max = 2 / (1 - beta2) - 1
                    N_sma = N_sma_max - 2 * \
                        state['step'] * beta2_t / (1 - beta2_t)
                    buffered[1] = N_sma
                    if N_sma > self.N_sma_threshhold:
                        step_size = math.sqrt(
                            (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) *
                            (N_sma - 2) / N_sma * N_sma_max /
                            (N_sma_max - 2)) / (1 - beta1**state['step'])
                    else:
                        step_size = 1.0 / (1 - beta1**state['step'])
                    buffered[2] = step_size

                # if group['weight_decay'] != 0:
                #    p_data_fp32.add_(-group['weight_decay']
                #                     * group['lr'], p_data_fp32)

                # apply lr
                if N_sma > self.N_sma_threshhold:
                    denom = exp_avg_sq.sqrt().add_(group['eps'])
                    G_grad = exp_avg / denom
                else:
                    G_grad = exp_avg

                if group['weight_decay'] != 0:
                    G_grad.add_(p_data_fp32, alpha=group['weight_decay'])
                # GC operation
                if not self.gc_loc:
                    G_grad = centralized_gradient(
                        G_grad,
                        use_gc=self.use_gc,
                        gc_conv_only=self.gc_conv_only)

                p_data_fp32.add_(G_grad, alpha=-step_size * group['lr'])
                p.data.copy_(p_data_fp32)

                # integrated look ahead...
                # we do it at the param level instead of group level
                if state['step'] % group['k'] == 0:
                    # get access to slow param tensor
                    slow_p = state['slow_buffer']
                    # (fast weights - slow weights) * alpha
                    slow_p.add_(p.data - slow_p, alpha=self.alpha)
                    # copy interpolated weights to RAdam param tensor
                    p.data.copy_(slow_p)

        return loss