# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) Alibaba, Inc. and its affiliates. from typing import List, Tuple import mmcv import numpy as np from numpy import random from easycv.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes, LiDARInstance3DBoxes) from easycv.datasets.registry import PIPELINES from .functional import (horizontal_flip_bbox, horizontal_flip_cam_params, horizontal_flip_canbus, horizontal_flip_image_multiview, scale_image_multiple_view) @PIPELINES.register_module() class PhotoMetricDistortionMultiViewImage: """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) 8. randomly swap channels Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta def __call__(self, results): """Call function to perform photometric distortion on images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Result dict with images distorted. """ imgs = results['img'] new_imgs = [] for img in imgs: assert img.dtype == np.float32, \ 'PhotoMetricDistortion needs the input image of dtype np.float32,'\ ' please set "to_float32=True" in "LoadImageFromFile" pipeline' # random brightness if random.randint(2): delta = random.uniform(-self.brightness_delta, self.brightness_delta) img += delta # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # convert color from BGR to HSV img = mmcv.bgr2hsv(img) # random saturation if random.randint(2): img[..., 1] *= random.uniform(self.saturation_lower, self.saturation_upper) # random hue if random.randint(2): img[..., 0] += random.uniform(-self.hue_delta, self.hue_delta) img[..., 0][img[..., 0] > 360] -= 360 img[..., 0][img[..., 0] < 0] += 360 # convert color from HSV to BGR img = mmcv.hsv2bgr(img) # random contrast if mode == 0: if random.randint(2): alpha = random.uniform(self.contrast_lower, self.contrast_upper) img *= alpha # randomly swap channels if random.randint(2): img = img[..., random.permutation(3)] new_imgs.append(img) results['img'] = new_imgs return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(\nbrightness_delta={self.brightness_delta},\n' repr_str += 'contrast_range=' repr_str += f'{(self.contrast_lower, self.contrast_upper)},\n' repr_str += 'saturation_range=' repr_str += f'{(self.saturation_lower, self.saturation_upper)},\n' repr_str += f'hue_delta={self.hue_delta})' return repr_str @PIPELINES.register_module() class ObjectRangeFilter(object): """Filter objects by the range. Args: point_cloud_range (list[float]): Point cloud range. """ def __init__(self, point_cloud_range): self.pcd_range = np.array(point_cloud_range, dtype=np.float32) def __call__(self, input_dict): """Call function to filter objects by the range. Args: input_dict (dict): Result dict from loading pipeline. Returns: dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' keys are updated in the result dict. """ # Check points instance type and initialise bev_range if isinstance(input_dict['gt_bboxes_3d'], (LiDARInstance3DBoxes, DepthInstance3DBoxes)): bev_range = self.pcd_range[[0, 1, 3, 4]] elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes): bev_range = self.pcd_range[[0, 2, 3, 5]] gt_bboxes_3d = input_dict['gt_bboxes_3d'] gt_labels_3d = input_dict['gt_labels_3d'] mask = gt_bboxes_3d.in_range_bev(bev_range) gt_bboxes_3d = gt_bboxes_3d[mask] # mask is a torch tensor but gt_labels_3d is still numpy array # using mask to index gt_labels_3d will cause bug when # len(gt_labels_3d) == 1, where mask=1 will be interpreted # as gt_labels_3d[1] and cause out of index error gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)] # limit rad to [-pi, pi] gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi) input_dict['gt_bboxes_3d'] = gt_bboxes_3d input_dict['gt_labels_3d'] = gt_labels_3d return input_dict def __repr__(self): """str: Return a string that describes the module.""" repr_str = self.__class__.__name__ repr_str += f'(point_cloud_range={self.pcd_range.tolist()})' return repr_str @PIPELINES.register_module() class ObjectNameFilter(object): """Filter GT objects by their names. Args: classes (list[str]): List of class names to be kept for training. """ def __init__(self, classes): self.classes = classes self.labels = list(range(len(self.classes))) def __call__(self, input_dict): """Call function to filter objects by their names. Args: input_dict (dict): Result dict from loading pipeline. Returns: dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' keys are updated in the result dict. """ gt_labels_3d = input_dict['gt_labels_3d'] gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d], dtype=np.bool_) input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask] input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask] return input_dict def __repr__(self): """str: Return a string that describes the module.""" repr_str = self.__class__.__name__ repr_str += f'(classes={self.classes})' return repr_str @PIPELINES.register_module() class NormalizeMultiviewImage(object): """Normalize the image. Added key is "img_norm_cfg". Args: mean (sequence): Mean values of 3 channels. std (sequence): Std values of 3 channels. to_rgb (bool): Whether to convert the image from BGR to RGB, default is true. """ def __init__(self, mean, std, to_rgb=True): self.mean = np.array(mean, dtype=np.float32) self.std = np.array(std, dtype=np.float32) self.to_rgb = to_rgb def __call__(self, results): """Call function to normalize images. Args: results (dict): Result dict from loading pipeline. Returns: dict: Normalized results, 'img_norm_cfg' key is added into result dict. """ results['img'] = [ mmcv.imnormalize(img, self.mean, self.std, self.to_rgb) for img in results['img'] ] results['img_norm_cfg'] = dict( mean=self.mean, std=self.std, to_rgb=self.to_rgb) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})' return repr_str @PIPELINES.register_module() class PadMultiViewImage(object): """Pad the multi-view image. There are two padding modes: (1) pad to a fixed size and (2) pad to the minimum size that is divisible by some number. Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", Args: size (tuple, optional): Fixed padding size. size_divisor (int, optional): The divisor of padded size. pad_val (float, optional): Padding value, 0 by default. """ def __init__(self, size=None, size_divisor=None, pad_val=0): self.size = size self.size_divisor = size_divisor self.pad_val = pad_val # only one of size and size_divisor should be valid assert size is not None or size_divisor is not None assert size is None or size_divisor is None def _pad_img(self, results): """Pad images according to ``self.size``.""" if self.size is not None: padded_img = [ mmcv.impad(img, shape=self.size, pad_val=self.pad_val) for img in results['img'] ] elif self.size_divisor is not None: padded_img = [ mmcv.impad_to_multiple( img, self.size_divisor, pad_val=self.pad_val) for img in results['img'] ] results['ori_shape'] = [img.shape for img in results['img']] results['img'] = padded_img results['img_shape'] = [img.shape for img in padded_img] results['pad_shape'] = [img.shape for img in padded_img] results['pad_fixed_size'] = self.size results['pad_size_divisor'] = self.size_divisor def __call__(self, results): """Call function to pad images, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: dict: Updated result dict. """ self._pad_img(results) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(size={self.size}, ' repr_str += f'size_divisor={self.size_divisor}, ' repr_str += f'pad_val={self.pad_val})' return repr_str @PIPELINES.register_module() class RandomScaleImageMultiViewImage(object): """Resize the multiple-view images with the same scale selected randomly. . Args: scales (tuple of float): ratio for resizing the images. Every time, select one ratio randomly. """ def __init__(self, scales=[0.5, 1.0, 1.5]): self.scales = scales self.seed = 0 def forward( self, imgs: List[np.ndarray], cam_intrinsics: List[np.ndarray], lidar2img: List[np.ndarray], seed=None, scale=1 ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]: """ Args: imgs (list of numpy.array): Multiple-view images to be resized. len(img) is the number of cameras. img shape: [H, W, 3]. cam_intrinsics (list of numpy.array): Intrinsic parameters of different cameras. Transformations from camera to image. len(cam_intrinsics) is the number of camera. For each camera, shape is 4 * 4. cam_extrinsics (list of numpy.array): Extrinsic parameters of different cameras. Transformations from lidar to cameras. len(cam_extrinsics) is the number of camera. For each camera, shape is 4 * 4. lidar2img (list of numpy.array): Transformations from lidar to images. len(lidar2img) is the number of camera. For each camera, shape is 4 * 4. seed (int): Seed for generating random number. Returns: imgs_new (list of numpy.array): Updated multiple-view images cam_intrinsics_new (list of numpy.array): Updated intrinsic parameters of different cameras. lidar2img_new (list of numpy.array): Updated Transformations from lidar to images. """ rand_scale = scale imgs_new, cam_intrinsic_new, lidar2img_new = scale_image_multiple_view( imgs, cam_intrinsics, lidar2img, rand_scale) return imgs_new, cam_intrinsic_new, lidar2img_new def __call__(self, data): imgs = data['img'] cam_intrinsics = data['cam_intrinsic'] lidar2img = data['lidar2img'] rand_ind = np.random.permutation(range(len(self.scales)))[0] scale = data[ 'resize_scale'] if 'resize_scale' in data else self.scales[rand_ind] imgs_new, cam_intrinsic_new, lidar2img_new = self.forward( imgs, cam_intrinsics, lidar2img, None, scale) data['img'] = imgs_new data['cam_intrinsic'] = cam_intrinsic_new data['lidar2img'] = lidar2img_new return data @PIPELINES.register_module() class RandomHorizontalFlipMultiViewImage(object): """Horizontally flip the multiple-view images with bounding boxes, camera parameters and can bus randomly. . Support coordinate systems like Waymo (https://waymo.com/open/data/perception/) or Nuscenes (https://www.nuscenes.org/public/images/data.png). Args: flip_ratio (float 0~1): probability of the images being flipped. Default value is 0.5. dataset (string): Specify 'waymo' coordinate system or 'nuscenes' coordinate system. """ def __init__(self, flip_ratio=0.5, dataset='nuScenes'): self.flip_ratio = flip_ratio self.seed = 0 self.dataset = dataset def forward( self, imgs: List[np.ndarray], bboxes_3d: np.ndarray, cam_intrinsics: List[np.ndarray], cam_extrinsics: List[np.ndarray], lidar2imgs: List[np.ndarray], canbus: np.ndarray, seed=None, flip_flag=True ) -> Tuple[bool, List[np.ndarray], np.ndarray, List[np.ndarray], List[np.ndarray], List[np.ndarray], np.ndarray]: """ Args: imgs (list of numpy.array): Multiple-view images to be resized. len(img) is the number of cameras. img shape: [H, W, 3]. bboxes_3d (np.ndarray): bounding boxes of shape [N * 7], N is the number of objects. cam_intrinsics (list of numpy.array): Intrinsic parameters of different cameras. Transformations from camera to image. len(cam_intrinsics) is the number of camera. For each camera, shape is 4 * 4. cam_extrinsics (list of numpy.array): Extrinsic parameters of different cameras. Transformations from lidar to cameras. len(cam_extrinsics) is the number of camera. For each camera, shape is 4 * 4. lidar2img (list of numpy.array): Transformations from lidar to images. len(lidar2img) is the number of camera. For each camera, shape is 4 * 4. canbus (numpy.array): seed (int): Seed for generating random number. Returns: imgs_new (list of numpy.array): Updated multiple-view images cam_intrinsics_new (list of numpy.array): Updated intrinsic parameters of different cameras. lidar2img_new (list of numpy.array): Updated Transformations from lidar to images. """ if flip_flag == False: return flip_flag, imgs, bboxes_3d, cam_intrinsics, cam_extrinsics, lidar2imgs, canbus else: # flip_flag = True imgs_flip = horizontal_flip_image_multiview(imgs) bboxes_3d_flip = horizontal_flip_bbox(bboxes_3d, self.dataset) img_shape = imgs[0].shape cam_intrinsics_flip, cam_extrinsics_flip, lidar2imgs_flip = horizontal_flip_cam_params( img_shape, cam_intrinsics, cam_extrinsics, lidar2imgs, self.dataset) canbus_flip = horizontal_flip_canbus(canbus, self.dataset) return flip_flag, imgs_flip, bboxes_3d_flip, cam_intrinsics_flip, cam_extrinsics_flip, lidar2imgs_flip, canbus_flip def __call__(self, data): imgs = data['img'] bboxes_3d = data['gt_bboxes_3d'] cam_intrinsics = data['cam_intrinsic'] lidar2imgs = data['lidar2img'] canbus = data['can_bus'] cam_extrinsics = data['lidar2cam'] flip_flag = data['flip_flag'] flip_flag, imgs_flip, bboxes_3d_flip, cam_intrinsics_flip, cam_extrinsics_flip, lidar2imgs_flip, canbus_flip = self.forward( imgs, bboxes_3d, cam_intrinsics, cam_extrinsics, lidar2imgs, canbus, None, flip_flag) data['img'] = imgs_flip data['gt_bboxes_3d'] = bboxes_3d_flip data['cam_intrinsic'] = cam_intrinsics_flip data['lidar2img'] = lidar2imgs_flip data['can_bus'] = canbus_flip data['lidar2cam'] = cam_extrinsics_flip return data