# Copyright (c) Alibaba, Inc. and its affiliates. import platform import random from distutils.version import LooseVersion from functools import partial import numpy as np import torch from mmcv.parallel import collate from mmcv.runner import get_dist_info from torch.utils.data import DataLoader, RandomSampler from easycv.datasets.shared.odps_reader import set_dataloader_workid from easycv.utils.dist_utils import sync_random_seed from easycv.utils.torchacc_util import is_torchacc_enabled from .collate import CollateWrapper from .sampler import DistributedMPSampler, DistributedSampler, RASampler if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1])) def build_dataloader(dataset, imgs_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, replace=False, seed=None, reuse_worker_cache=False, odps_config=None, persistent_workers=False, collate_hooks=None, use_repeated_augment_sampler=False, **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. imgs_per_gpu (int): Number of images on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. replace (bool): Replace or not in random shuffle. It works on when shuffle is True. seed (int, Optional): The seed. Default to None. reuse_worker_cache (bool): If set true, will reuse worker process so that cached data in worker process can be reused. persistent_workers (bool) : After pytorch1.7, could use persistent_workers=True to avoid reconstruct dataworker before each epoch, speed up before epoch use_repeated_augment_sampler (bool) : If set true, it will use RASampler. Default: False. kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() if dist: seed = sync_random_seed(seed) split_huge_listfile_byrank = getattr(dataset, 'split_huge_listfile_byrank', False) if use_repeated_augment_sampler: sampler = RASampler(dataset, world_size, rank, shuffle=shuffle) elif hasattr(dataset, 'm_per_class') and dataset.m_per_class > 1: sampler = DistributedMPSampler( dataset, world_size, rank, shuffle=shuffle, split_huge_listfile_byrank=split_huge_listfile_byrank) else: sampler = DistributedSampler( dataset, world_size, rank, shuffle=shuffle, seed=seed, split_huge_listfile_byrank=split_huge_listfile_byrank) batch_size = imgs_per_gpu num_workers = workers_per_gpu else: if replace: raise NotImplementedError if use_repeated_augment_sampler: sampler = RASampler(dataset, 1, 0, shuffle=shuffle) elif hasattr(dataset, 'm_per_class') and dataset.m_per_class > 1: sampler = DistributedMPSampler( dataset, 1, 0, shuffle=shuffle, replace=replace) else: sampler = RandomSampler( dataset) if shuffle else None # TODO: set replace batch_size = num_gpus * imgs_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed, odps_config=odps_config) if seed is not None else None collate_fn = dataset.collate_fn if hasattr( dataset, 'collate_fn') else partial( collate, samples_per_gpu=imgs_per_gpu) if collate_hooks: collate_fn = CollateWrapper(collate_fn, collate_hooks) if not reuse_worker_cache: if LooseVersion(torch.__version__) < LooseVersion('1.7.0'): print( 'Pytorch Version < 1.7, build Dataloader without persistent_workers' ) data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=False, worker_init_fn=init_fn, **kwargs) else: data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=False, worker_init_fn=init_fn, persistent_workers=persistent_workers, **kwargs) else: # use InfiniteDataLoader to reuse worker process for caching data data_loader = InfiniteDataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=False, worker_init_fn=init_fn, **kwargs) if is_torchacc_enabled(): from .loader_wrapper import TorchaccLoaderWrapper data_loader = TorchaccLoaderWrapper(data_loader) return data_loader def worker_init_fn(worker_id, num_workers, rank, seed, odps_config=None): # The seed of each worker equals to # num_worker * rank + worker_id + user_seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed) torch.manual_seed(worker_seed) if odps_config is not None: # for odps to set correct offset in multi-process pytorch dataloader # use init_fn to set global DATALOADER_WORKID before dataset getitem set_dataloader_workid(worker_id) # set_dataloader_worknum(imgs_per_gpu) class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): """ Dataloader that reuses workers. https://github.com/pytorch/pytorch/issues/15849 Uses same syntax as vanilla DataLoader. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) self.iterator = super().__iter__() def __len__(self): return len(self.batch_sampler.sampler) def __iter__(self): for i in range(len(self)): yield next(self.iterator) class _RepeatSampler(object): """ Sampler that repeats forever. Args: sampler (Sampler) """ def __init__(self, sampler): self.sampler = sampler def __iter__(self): while True: yield from iter(self.sampler)