# Copyright (c) Alibaba, Inc. and its affiliates. """Contains functions which are convenient for unit testing.""" import copy import logging import os import pickle import shutil import socket import subprocess import sys import tempfile import timeit import unittest import uuid from multiprocessing import Process import numpy as np import torch from easycv.file import io from easycv.framework.errors import RuntimeError TEST_DIR = '/tmp/ev_pytorch_test' def get_tmp_dir(): if os.environ.get('TEST_DIR', '') != '': global TEST_DIR TEST_DIR = os.environ['TEST_DIR'] dir_name = os.path.join(TEST_DIR, uuid.uuid4().hex) if os.path.exists(dir_name): shutil.rmtree(dir_name) os.makedirs(dir_name) return dir_name def clear_all_tmp_dirs(): shutil.rmtree(TEST_DIR) def replace_data_for_test(cfg): """ replace real data with test data Args: cfg: Config object """ pass # function dectorator to run function in subprocess # if a function will start a tf session. Because tensorflow # gpu memory will not be cleared until the process exit def RunAsSubprocess(f): def wrapped_f(*args, **kw): p = Process(target=f, args=args, kwargs=kw) p.start() p.join(timeout=600) assert p.exitcode == 0, 'subprocess run failed: %s' % f.__name__ return wrapped_f def clean_up(test_dir): if test_dir is not None: shutil.rmtree(test_dir) def run_in_subprocess(cmd): try: with subprocess.Popen( cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) as return_info: while True: next_line = return_info.stdout.readline() return_line = next_line.decode('utf-8', 'ignore').strip() if return_line == '' and return_info.poll() != None: break if return_line != '': logging.info(return_line) err_lines = '' while True: next_line = return_info.stderr.readline() return_line = next_line.decode('utf-8', 'ignore').strip() if return_line == '' and return_info.poll() != None: break if return_line != '': logging.info(return_line) err_lines += return_line + '\n' return_code = return_info.wait() if return_code: raise RuntimeError(err_lines) except Exception as e: raise e def dist_exec_wrapper(cmd, nproc_per_node, node_rank=0, nnodes=1, port='29527', addr='127.0.0.1', python_path=None): """ donot forget init dist in your function or script of cmd ```python from mmcv.runner import init_dist init_dist(launcher='pytorch') ``` """ dist_world_size = nproc_per_node * nnodes cur_env = os.environ.copy() cur_env['WORLD_SIZE'] = str(dist_world_size) cur_env['MASTER_ADDR'] = addr if is_port_used(port): port = str(get_random_port()) logging.warning('Given port is used, change to port %s' % port) cur_env['MASTER_PORT'] = port processes = [] for local_rank in range(0, nproc_per_node): # rank of each process dist_rank = nproc_per_node * node_rank + local_rank cur_env['RANK'] = str(dist_rank) cur_env['LOCAL_RANK'] = str(local_rank) if python_path: cur_env['PYTHONPATH'] = ':'.join( (cur_env['PYTHONPATH'], python_path)) process = subprocess.Popen(cmd, env=cur_env, shell=True) processes.append(process) for process in processes: process.wait() if process.returncode != 0: raise subprocess.CalledProcessError( returncode=process.returncode, cmd=cmd) def is_port_used(port, host='127.0.0.1'): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.connect((host, int(port))) return True except: return False finally: s.close() def get_random_port(): while True: port = np.random.randint(low=5000, high=10000) if is_port_used(port): continue else: break logging.info('Random port: %s' % port) return port def pseudo_dist_init(): os.environ['RANK'] = '0' os.environ['WORLD_SIZE'] = '1' os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = str(get_random_port()) torch.cuda.set_device(0) from torch import distributed as dist dist.init_process_group(backend='nccl') def computeStats(backend, timings, batch_size=1, model_name='default'): """ compute the statistical metric of time and speed """ times = np.array(timings) steps = len(times) speeds = batch_size / times time_mean = np.mean(times) time_med = np.median(times) time_99th = np.percentile(times, 99) time_std = np.std(times, ddof=0) speed_mean = np.mean(speeds) speed_med = np.median(speeds) msg = ('\n%s =================================\n' 'batch size=%d, num iterations=%d\n' ' Median FPS: %.1f, mean: %.1f\n' ' Median latency: %.6f, mean: %.6f, 99th_p: %.6f, std_dev: %.6f\n' ) % ( backend, batch_size, steps, speed_med, speed_mean, time_med, time_mean, time_99th, time_std, ) meas = { 'Name': model_name, 'Backend': backend, 'Median(FPS)': speed_med, 'Mean(FPS)': speed_mean, 'Median(ms)': time_med, 'Mean(ms)': time_mean, '99th_p': time_99th, 'std_dev': time_std, } return meas @torch.no_grad() def benchmark(predictor, input_data_list, backend='BACKEND', batch_size=1, model_name='default', num=200): """ evaluate the time and speed of different models """ timings = [] for i in range(num): start_time = timeit.default_timer() output = predictor.predict(input_data_list)[0] torch.cuda.synchronize() end_time = timeit.default_timer() meas_time = end_time - start_time timings.append(meas_time) return computeStats(backend, timings, batch_size, model_name) _DIST_SCRIPT_TEMPLATE = """ import ast import argparse import pickle import torch from torch import distributed as dist from easycv.utils.dist_utils import is_master import {} parser = argparse.ArgumentParser() parser.add_argument('--save_all_ranks', type=ast.literal_eval, help='save all ranks results') parser.add_argument('--save_file', type=str, help='save file') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() def main(): results = {}.{}({}) # module.func(params) if args.save_all_ranks: save_file = args.save_file + str(dist.get_rank()) with open(save_file, 'wb') as f: pickle.dump(results, f) else: if is_master(): with open(args.save_file, 'wb') as f: pickle.dump(results, f) if __name__ == '__main__': main() """ class DistributedTestCase(unittest.TestCase): """Distributed TestCase for test function with distributed mode. Examples: import torch from mmcv.runner import init_dist from torch import distributed as dist def _test_func(*args, **kwargs): init_dist(launcher='pytorch') rank = dist.get_rank() if rank == 0: value = torch.tensor(1.0).cuda() else: value = torch.tensor(2.0).cuda() dist.all_reduce(value) return value.cpu().numpy() class DistTest(DistributedTestCase): def test_function_dist(self): args = () # args should be python builtin type kwargs = {} # kwargs should be python builtin type self.start_with_torch( _test_func, num_gpus=2, assert_callback=lambda x: self.assertEqual(x, 3.0), *args, **kwargs, ) """ def _start(self, dist_start_cmd, func, num_gpus, assert_callback=None, save_all_ranks=False, *args, **kwargs): script_path = func.__code__.co_filename script_dir, script_name = os.path.split(script_path) script_name = os.path.splitext(script_name)[0] func_name = func.__qualname__ func_params = [] for arg in args: if isinstance(arg, str): arg = ('\'{}\''.format(arg)) func_params.append(str(arg)) for k, v in kwargs.items(): if isinstance(v, str): v = ('\'{}\''.format(v)) func_params.append('{}={}'.format(k, v)) func_params = ','.join(func_params).strip(',') tmp_run_file = tempfile.NamedTemporaryFile(suffix='.py').name tmp_res_file = tempfile.NamedTemporaryFile(suffix='.pkl').name with open(tmp_run_file, 'w') as f: print('save temporary run file to : {}'.format(tmp_run_file)) print('save results to : {}'.format(tmp_res_file)) run_file_content = _DIST_SCRIPT_TEMPLATE.format( script_name, script_name, func_name, func_params) f.write(run_file_content) tmp_res_files = [] if save_all_ranks: for i in range(num_gpus): tmp_res_files.append(tmp_res_file + str(i)) else: tmp_res_files = [tmp_res_file] self.addCleanup(self.clean_tmp, [tmp_run_file] + tmp_res_files) tmp_env = copy.deepcopy(os.environ) tmp_env['PYTHONPATH'] = ':'.join( (tmp_env.get('PYTHONPATH', ''), script_dir)).lstrip(':') script_params = '--save_all_ranks=%s --save_file=%s' % (save_all_ranks, tmp_res_file) script_cmd = '%s %s %s' % (dist_start_cmd, tmp_run_file, script_params) print('script command: %s' % script_cmd) res = subprocess.call(script_cmd, shell=True, env=tmp_env) script_res = [] for res_file in tmp_res_files: with open(res_file, 'rb') as f: script_res.append(pickle.load(f)) if not save_all_ranks: script_res = script_res[0] if assert_callback: assert_callback(script_res) self.assertEqual( res, 0, msg='The test function ``{}`` in ``{}`` run failed!'.format( func_name, script_name)) return script_res def start_with_torch(self, func, num_gpus, assert_callback=None, save_all_ranks=False, *args, **kwargs): ip = socket.gethostbyname(socket.gethostname()) dist_start_cmd = '%s -m torch.distributed.launch --nproc_per_node=%d --master_addr=\'%s\' --master_port=%s' % ( sys.executable, num_gpus, ip, get_random_port()) return self._start( dist_start_cmd=dist_start_cmd, func=func, num_gpus=num_gpus, assert_callback=assert_callback, save_all_ranks=save_all_ranks, *args, **kwargs) def start_with_torchacc(self, func, num_gpus, assert_callback=None, save_all_ranks=False, *args, **kwargs): ip = socket.gethostbyname(socket.gethostname()) dist_start_cmd = 'xlarun --nproc_per_node=%d --master_addr=\'%s\' --master_port=%s' % ( num_gpus, ip, get_random_port()) return self._start( dist_start_cmd=dist_start_cmd, func=func, num_gpus=num_gpus, assert_callback=assert_callback, save_all_ranks=save_all_ranks, *args, **kwargs) def clean_tmp(self, tmp_file_list): for file in tmp_file_list: if io.exists(file): if io.isdir(file): io.rmtree(file) else: io.remove(file)