CLASSES = [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] # dataset settings data_root = 'data/coco/' img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) image_size = (1024, 1024) train_pipeline = [ # large scale jittering dict( type='MMResize', img_scale=image_size, ratio_range=(0.1, 2.0), multiscale_mode='range', keep_ratio=True), dict( type='MMRandomCrop', crop_type='absolute_range', crop_size=image_size, recompute_bbox=False, allow_negative_crop=True), dict(type='MMFilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)), dict(type='MMRandomFlip', flip_ratio=0.5), dict(type='MMNormalize', **img_norm_cfg), dict(type='MMPad', size=image_size), dict(type='DefaultFormatBundle'), dict( type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'], meta_keys=('filename', 'ori_filename', 'ori_shape', 'ori_img_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')) ] test_pipeline = [ dict( type='MMMultiScaleFlipAug', img_scale=image_size, flip=False, transforms=[ dict(type='MMResize', keep_ratio=True), dict(type='MMRandomFlip'), dict(type='MMNormalize', **img_norm_cfg), dict(type='MMPad', size_divisor=1024), dict(type='ImageToTensor', keys=['img']), dict( type='Collect', keys=['img'], meta_keys=('filename', 'ori_filename', 'ori_shape', 'ori_img_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')) ]) ] train_dataset = dict( type='DetDataset', data_source=dict( type='DetSourceCoco', ann_file=data_root + 'annotations/instances_train2017.json', img_prefix=data_root + 'train2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ], classes=CLASSES, test_mode=False, filter_empty_gt=True, iscrowd=False), pipeline=train_pipeline) val_dataset = dict( type='DetDataset', imgs_per_gpu=1, data_source=dict( type='DetSourceCoco', ann_file=data_root + 'annotations/instances_val2017.json', img_prefix=data_root + 'val2017/', pipeline=[ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True) ], classes=CLASSES, test_mode=True, filter_empty_gt=False, iscrowd=True), pipeline=test_pipeline) data = dict( imgs_per_gpu=1, workers_per_gpu=2, train=train_dataset, val=val_dataset) # evaluation eval_config = dict(interval=1, gpu_collect=False) eval_pipelines = [ dict( mode='test', evaluators=[ dict(type='CocoDetectionEvaluator', classes=CLASSES), ], ) ]